Что такое жесткость тела пружины

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = –kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности – величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения – Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости – коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Готовые работы на аналогичную тему

  • Курсовая работа Жесткость пружины, формула 490 руб.
  • Реферат Жесткость пружины, формула 230 руб.
  • Контрольная работа Жесткость пружины, формула 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Лабораторная работа N06

Определение величины коэффициента жесткости пружины статическим и динамическим методами

Цель:вычислить и сравнить величины коэффициентов жесткости пружины, определенных статическим и динамическим методами.

Приборы и оборудование: штатив, набор пружин различной жесткости, набор грузов, линейка, секундомер.

Обоснование метода

1. Статический метод определения коэффициента упругости
Из закона Гука, определяющего линейную зависимость между механической деформацией тела и деформирующей силой в случае

(6.1)

ΔlFРmP=mg

(6.2)

2. Динамический метод определения коэффициента упругости
Из формулы Томсона для пружинного маятника (I.4) выразим коэффициент упругости k:

(6.3)

kдинmkTсрtсрN

(6.4)

Порядок выполнения работы

  1. Соберите пружинный маятник. Для этого на штативе укрепите указанную лаборантом или преподавателем одну из пружин набора, измерив ее начальную длину в недеформированном состоянии l, и подвесьте к ней один груз известной массы m1 из набора грузов (см. рис.5).
  2. Измерьте длину пружины в растянутом (деформированном) состоянии l и определите деформацию пружины Δl=l- l.
  3. Повторите измерения и расчеты еще для двух грузов массами m2 и m3. Вычислите по формуле (6.2) значения kст и рассчитайте его среднее значение kст ср по формуле (0.3) и погрешность по формуле (0.4).
  4. Заполните таблицу 1.

    Таблица 1

    Результаты опыта по определению коэффициента жесткости пружины статическим методом

    Номер опыта Масса груза m, кг Вес груза P, Н Длина пружины Деформация Δl, м kст, Н/м kст ср ±Δkст, Н/м
    начальная l, м после растяжения l, м
    1              
    2            
    3            
  5. Не меняя пружины, подвесьте груз массой m1 и измерьте время t1 для N=60 полных колебаний груза малой амплитуды.
  6. Не меняя пружины и груза, повторите измерения еще 4 раза.
  7. Найдите среднее время для 60 колебаний tср=(t1+t2+┘+t5)/5 и по формуле (6.4) рассчитайте среднее значение периода колебаний Tср.
  8. По формуле (0.4) рассчитайте абсолютную Δt и по формуле (0.6) — относительную погрешность времени εt.
  9. Используя формулу (6.3), рассчитайте среднее значение динамического коэффициента жесткости исследуемой пружины kдин.
  10. Рассчитайте относительную погрешность коэффициента упругости по формуле εk=2εt, следующей из (0.8), и по формуле (0.9) определите абсолютную погрешность Δk.
  11. Заполните таблицу 2.

    Таблица 2

    Результаты опыта по определению коэффициента жесткости пружины динамическим методом

    Номер опыта Масса груза m, кг Число колебаний N Время колебаний t tср Период Tср, с Коэффициент упругости kдин ср, Н/м
    1            
    2  
     
    5  
      Δt= ; εt= εk= ; Δk= ;
  12. Сравнив значения kст ср и kдин ср, сформулируйте и запишите вывод.

Контрольные вопросы

  1. Виды деформации. Закон Гука.
  2. Что называется жесткостью пружины и от чего она зависит?
  3. Опишите превращение энергии при колебаниях пружинного маятника.
  4. Какие силы действуют на груз в опыте? Запишите закон Ньютона для него. Выведите формулу (6.2).

Свойства пружин подвески

Когда торсионы на транспортных средствах заменили на пружины, улучшилась управляемость, . Пружины поддерживают клиренс автомобиля, уменьшая вибрации и удары во время движения транспортного средства.

Чтобы езда была комфортной, необходимо правильно подобрать детали. Если теххарактеристики будут неподходящими, то положительные свойства подвески будут сведены к нулю

Потому важно учитывать следующие параметры:

  • диаметр — его увеличение влияет на жёсткость;
  • количество витков — при увеличении жёсткость снижается;
  • форма.

Зачастую автовладельцы стремятся установить в подвеску более жёсткие детали. Это способствует увеличению чувствительности рулевого колеса к управлению водителем, но сцепление с дорогой ухудшается.

Любители спортивного стиля езды считают, что, напротив, лучше ставить детали с пониженной жёсткостью. Однако такая подвеска может создать проблемы на просёлочных дорогах.

Давайте рассмотрим подробнее, какие пружины лучше установить на ВАЗ.

Audi A3 маленький самолётик › Бортжурнал › Расчёт жёсткости пружин подвески

Здравствуйте! Поговорим или попишем о пружинах подвески.Пост для того, чтобы не забыть и для того, чтобы ознакомить Вас, читатели Предыдущая моя запись была про подвеску. На этот раз разберём самый интересный, на мой взгляд, компонент пружину подвески. Пока речь пойдёт про передние пружины, позже я добавлю и задние, когда доберусь до них, сниму мерки и метки. Давненько не даёт мне покоя эта тема, поэтому сведу всё в одну запись.Предыстория простая — иметь возможность подобрать то, что нужно под конкретный запрос.

Итак, для расчёта жёсткости пружины необходима следующая формула:

Как рассчитать на какую же величину произойдёт сжатие пружины под весом автомобиля?На этот вопрос нам ответит закон Гука: F = -k*x, где k — коэффициент жёсткости, а х — величина линейной деформации пружины. Соответственно линейную деформацию можно выразить: x = -Fk.Вот вроде бы и вся теоретическая часть.Например, хочу я подобрать себе пружины по жёстче да повыше и, тут возникает затык, поскольку на VAG масса пружин по каталогу, но характеристик их нет нигде. Вот люди и мучаются, пока придут к своему идеалу.Попался мне каталог пружин Kilen. Судя по отзывам можно поставить твёрдую 4-ку этому производителю. Некоторую подборку я здесь представлю. Пружины отфильтрованы по размеру основания +- 2 мм, типу CI, диаметру прутка, а так же отсортированы по диаметру прутка:

В каталоге есть легенда по параметрам пружин:

Теперь поговорим о клиренсе в стационарном режиме. Клиренс определяется как раз изменением длины пружины под действием силы тяжести.

Если мы хотим сохранить клиренс, но ужесточить подвеску, нам необходимо изменить параметр х в сторону уменьшения за счет увеличения коэфициента жесткости, при этом на столько же, насколько изменили значение х, необходимо выбрать пружину короче. Если мы увеличим только жесткость, но при этом длина пружина останется прежней, авто станет жестче, но при этом приподнимется.

Если мы хотим приподнять машину, но сохранить жесткость, то необходимо использовать более длинные пружины, но с тем же коэффициентом жесткости

На чем хотелось бы сакцентировать внимание: если происходит изменение клиренса одной из осей, а клиренс второй оси остается прежний, то автоматически происходит изменение распределения веса по осям. Если мы приподняли заднюю часть, то баланс веса смещается вперед, соответственно, сила, действующая на задние пружины становится меньше, а значит и параметр х тоже уменьшается

Этот прием часто применяется для снижения вероятности пробуксовки передней оси на переднеприводных автомобилях. Наиболее популярный метод сохранения жесткости с увеличением клиренса — это установка проставок под те же пружины или на опорную чашку. При таком подходе сама пружина сжимается под весом авто почти так же, как и до доработки, с небольшой поправкой на перераспределение веса по осям, но за счет проставок дорожный просвет увеличивается на толщину проставки.

Параметр х очень важен для стойки, так как у штока аммортизатора имеется некоторый участок примерно в треть длины, который в стационарном состоянии должен находиться внутри аммортизатора. Это необходимо для того, чтобы аммортизатор работал не только на отбой, но и на разгрузку. Если Вы поставите пружины настолько жесткие, что после опускания автомобиля с домкрата пружина не сожмется на необходимый ход штока, то в процессе эксплуатации аммортизаторы очень быстро выйдут из строя. Кроме того, неправильно подобранное значение х повлияет и на управляемость автомобиля — неправильно настроенная ось будет подпрыгивать на каждой кочке и в поворотах.

Ну, и в заключение поговорим о понятии «преднатяг». Если пружина ставится соосно с аммортизатором, то преднатяг определяется разницей между длиной пружины и длиной вытянутого штока. Т.е. это та часть значения х, которая сохраняется даже при подъеме авто на подъемнике. На само значение х преднатяг не влияет. Если говорят, что преднатяг нулевой, то это значит, что при разборе и сборе стойки Вам не понадобятся стяжки пружин.

Выделенный курсивом материал взят у человека Box77 . За что ему спасибо

Практические занятия

Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.

Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.

На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:

  • k — суммарная жёсткость соединений;
  • k1 …ki — жёсткость каждого элемента системы;
  • i — число пружин в цепи.

Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.

Основная методика для вычислений

На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:

  1. Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
  2. Линейкой измеряется длина предмета. Результат записывается как х1.
  3. На свободный конец подвешивается груз с известной массой m.
  4. Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
  5. Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
  6. Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.

Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.

Решение задач

Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.

Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.

Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.

Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.

Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.

Коэффициент Пуассона, формула и примеры

Определение и формула коэффициента Пуассона

Обратимся к рассмотрению деформации твердого тела. В рассматриваемом процессе происходит изменение размеров, объема и часто формы тела. Так, относительное продольное растяжение (сжатие) объекта происходит при его относительном поперечном сужении (расширении). При этом продольная деформация определена формулой:

где — длина образца до деформации, — изменение длины при нагрузке.

Однако, при растяжении (сжатии) происходит не только изменение длины образца, но и при этом меняются поперечные размеры тела. Деформация в поперечном направлении характеризуется величиной относительного поперечного сужения (расширения):

где — диаметр цилиндрической части образца до деформации (поперечный размер образца).

Эмпирически получено, что при упругих деформациях выполняется равенство:

Коэффициент Пуассона в совокупности с модулем Юнга (E) является характеристикой упругих свойств материала.

Коэффициент Пуассона при объемной деформации

Если коэффициент объемной деформации () принять равным:

где — изменение объема тела, — первоначальный объем тела. То при упругих деформациях выполняется соотношение:

Часто в формуле (6) отбрасывают члены малых порядков и используют в виде:

Для изотропных материалов коэффициент Пуассона должен находиться в пределах:

Существование отрицательных значений коэффициента Пуассона означает, что при растяжении поперечные размеры объекта могли бы увеличиваться. Это возможно при наличии физико-химических изменений в процессе деформации тела. Материалы, у которых коэффициент Пуассона меньше нуля называют ауксетиками.

Максимальная величина коэффициента Пуассона является характеристикой более эластичных материалов. Минимальное значение его относится к хрупким веществам. Так стали имеют коэффициент Пуассона от 0,27 до 0,32. Коэффициент Пуассона для резин варьируется в пределах: 0,4 — 0,5.

Коэффициент Пуассона и пластическая деформация

Выражение (4) выполняется и при пластических деформациях, однако в таком случае коэффициент Пуассона зависит от величины деформации:

С ростом деформации и возникновении существенных пластических деформаций Опытным путем установлено, что пластическая деформация происходит без изменения объема вещества, так как этот вид деформации возникает за счет сдвигов слоев материала.

Влияние сопротивления на свободные колебания

Особенности детали определяют то, что при ее применении есть вероятность возникновения свободного колебательного движения. При этом имеет значение, какими особенностями обладает параллельно и последовательно соединенные пружины. Среди особенностей влияния сопротивления на свободное колебание отметим следующие моменты:

  1. Проведенные тесты указывают на то, что параллельно соединенные пружины препятствуют возникновению свободного колебания. Это можно связать с существенным увеличением жесткости всей системы.
  2. При последовательном расположении есть вероятность снижения сопротивления, так как расстояние между точкой крепления и телом существенно увеличивается.

Именно поэтому для существенного снижения колебательного вращения на момент эксплуатации системы рекомендуется использовать параллельный метод подключения.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах

Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Параллельное соединение пружин

с1с2

. (2.9)

Р

Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна сумме сил упругости двух установленных пружин, откуда с учетом (2.9) получаем

,

окончательно

. (2.10)

Последовательное соединение пружин

При последовательном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.6), смещение тела равно сумме деформаций пружин:

. (2.11)

Рис. 3.6 Последовательное соединение пружин

Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна каждой из сил упругости установленных пружин, откуда

,

откуда

Окончательно с учетом (2.11) получаем

. (2.12)

      1. Влияние сопротивления на свободные колебания

Пусть на точку массы m, совершающую прямолинейное движение, действуют две силы (рис. 2.7):

  1. Восстанавливающая сила (сила упругости пружины):

    .

  2. Сила сопротивления, пропорциональная скорости движения точки (сила сопротивления демпфера): .

Рис. 2.7 Движение массы с демпфированием

Дифференциальное уравнение движения точки запишется как

,

обозначая

получаем линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:

. (2.14)

Характеристическое уравнение имеет вид

, (2.15)

его корни равны

, (2.16)

где – дискриминант.

Как известно из курса высшей математики, общее решение дифференциального уравнения (2.14) существенно зависит от знака дискриминанта , т.е. от соотношения между b и k.

1-й случай (малое сопротивление): bk , D0.

Обозначим , причем k*k. Тогда корни (2.16) характеристического уравнения будут комплексно сопряженными:

,

Общее решение дифференциального уравнения (2.14) в данном случае имеет вид

, (2.17)

это затухающие колебания с частотой k* и периодом

Амплитуда колебаний убывает со временем. Отношение последующей амплитуды к предыдущей называется декрементом затухания:

Рис. 2.8 Затухающие колебания

Часто используется также логарифмический декремент

Таким образом, амплитуды образуют геометрическую прогрессию с показателем q, меньшим единицы.

Видим также, что наличие сопротивления приводит к уменьшению частоты колебаний (k*k) и к увеличению их периода (Т*> Т).

2-й случай (граничный): b = k , D=0.

Корни (2.16) характеристического уравнения получаются кратные, , и решение дифференциального уравнения (2.14) приобретает вид

. (2.19)

Поскольку экспонента убывает быстрее, чем растёт линейная функция времени, в зависимости от начальных условий движения получим ту или иную картину затухающего апериодического (т.е. не колебательного) движения (рис.2.9).

3-й случай (большое сопротивление): b > k, D > 0.

В этом случае обозначим >0, и оба корня (2.16) характеристического уравнения будут действительными и отрицательными:

< 0, < 0,

общее решение

. (2.20)

Рис. 2.9 График затухающего апериодического движения

Здесь также получаем затухающие апериодическое движение, графики будут такие же, как и в случае b= k.

Применение цилиндрических пружин

На производстве наиболее востребованы цилиндрические пружины, так как они обладают уникальными особенностями. При создании системы отмечается центральная ось, вдоль которой действуют разные силы. В процессе изготовления подобных изделий используется проволока соответствующего диаметра.

Для её изготовления понадобится специальный сплав либо обычные металлы. Сам материал должен обладать высокой упругостью. Проволока может иметь витки одного диаметра либо разных радиусов. Большим спросом пользуются цилиндрическая пружина, которая в сжатом состоянии обладает незначительной толщиной.

Главными параметрами изделия считаются:

  • малый, средний и большой диаметр витков и самой проволоки;
  • шаг размещения отдельный колец.

В задачах по физике вычисляется k для двух состояний: растяжение и сжатие. В любом случае используется одна формула для определения величины. Разница понятий:

Исполнение, рассчитанное на сжатие, характеризуется дальним размещением витков. Расстояние, образуемое между ними, появляется возможность на сжатие.
Модель, связанная с растяжением, имеет кольца, расположенные плотно между собой. Такая форма определяет то, что при максимальной силе растяжение минимальное.

Отдельно рассматриваются варианты на изгиб и кручение. Такие детали рассчитываются по специальным формулам. Для разных соединений характерны определённые особенности. Чтобы провести определения растяжения, учитывается момент теста.

Показатель зависит от характеристик проволоки, оказываемой силы либо массы тела. Для всех систем используются разные формулы, но полученные результаты не имеют погрешностей. Чтобы провести тесты для вычисления основных параметров, используется специальное оборудование. Простые задачи с деформацией пружин решают ученики на уроках физике в 7−8 классе. О параллельном и последовательном соединении элементов системы узнают учащиеся старших классов.

Предыдущая
ФизикаЦикл Карно — формула, процессы и принципы работы
Следующая
ФизикаВлажность воздуха — способы определения, формулы и значение показателей

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector