Пора переходить на водород

Производство

Поскольку чистый водород не встречается на Земле в больших количествах, для его производства в промышленных масштабах обычно требуется ввод первичной энергии . Водородное топливо можно производить из метана или электролизом воды. По состоянию на 2020 год большая часть водорода (∼95%) производится из ископаемого топлива путем парового риформинга или частичного окисления метана и газификации угля, и лишь небольшое количество водорода производится другими способами, такими как газификация биомассы или электролиз воды.

Паровой риформинг метана, ведущая в настоящее время технология производства водорода в больших количествах, извлекает водород из метана . Однако в результате этой реакции в атмосферу выделяются углекислый газ и окись углерода, которые являются парниковыми газами, экзогенными по отношению к естественному круговороту углерода и, таким образом, способствуют изменению климата. При электролизе электричество пропускается через воду, чтобы разделить атомы водорода и кислорода. Этот метод может использовать ветер, солнечную энергию, геотермальную энергию, гидроэнергетику, ископаемое топливо, биомассу, ядерную энергию и многие другие источники энергии. Получение водорода с помощью этого процесса изучается как жизнеспособный способ производства его внутри страны по невысокой цене.

Синдзо Абэ посетит объект FH2R в марте 2020 г.

Самым крупным в мире предприятием по производству водородного топлива считается Фукусимский исследовательский центр по водородной энергии (FH2R), установка по производству водорода мощностью 10 МВт, открытая 7 марта 2020 года в Намиэ , префектура Фукусима . Участок занимает 180 000 квадратных метров земли, большая часть которой занята солнечными батареями ; но энергия из сети также используется для проведения электролиза воды для производства водородного топлива .

Водородные цели Европы

Попытки наладить использование водорода в качестве энергоносителя ведутся уже давно. Но сейчас, на фоне стремления ЕС к 2050 году сократить уровень углеродных выбросов до нуля, водородная энергетика переживает очередное возрождение.

Согласно представленной в начале июля стратегии Еврокомиссии, к 2030 году водородное топливо должно стать интегральной частью энергосистемы Евросоюза. В ближайшие четыре года в ЕС должно быть обеспечено строительство электролизных установок, которые позволят запустить производство до 1 млн тонн возобновляемого водорода. В перспективе водород планируется использовать в секторах, трудно поддающихся процессу декарбонизации, например, в тяжелой промышленности и на транспорте. В то же время ЕС признает необходимость использования природного газа по меньшей мере до 2030 года.

В свою очередь 11 крупных компаний Европы, обладающих инфраструктурой по транспортировке и хранению газа, представили свой план водородного будущего, согласно которому к 2040 году протяженность водородных трубопроводов достигнет 23 тыс. км, а 75% из них будет состоять из переоборудованных газовых труб. Перестроить на водород, в частности, планируется и трубопровод, который является продолжением балтийских маршрутов поставок газа из России — «Северный поток» и строящийся «Северный поток — 2». Последние при этом рассматриваются как «потенциальные дополнительные маршруты» поставок.

По словам аналитиков, в настоящее время без серьезной модернизации инфраструктура газопроводов допускает подмешивание c природным газом (метаном) до 10-20% водорода

«Принимая во внимание климатическую повестку ЕС, в частности недавно принятую водородную стратегию, предусматривающую импорт водорода из соседних стран, компания-оператор, равно как и «Газпром» серьезно прорабатывают вопрос прокачки газоводородной смеси. Тем более у «Северного потока — 2″, в отличие, например, от текущей газопроводной системы Украины, будут для этого технические возможности», — отмечает директор по исследованиям Vygon Consulting Мария Белова

К тому же, добавляет она, поставка водорода позволит поднять вопрос о смягчении условий по действующему ограничению на резервирование 50% мощности «Северного потока — 2».

Проблемы эксплуатации ДВС

В настоящий момент водородный двигатель не может в полной мере заменить традиционные моторы для автомобиля. Понимая принцип его работы, нельзя забывать о факторе опасности вещества.

Автопроизводители не смогут поголовно оснащать свои машины мотором, работающим на водороде, пока не устранят ряд препятствий. Главным из них считается сложность получения самого газа. Плюс комплектующие стоят дорого, что в настоящий момент делает производство слишком затратным.

Также есть проблемы с обеспечением надлежащего хранения вещества. Ведь чтобы поддерживать газ в нужном состоянии, требуется постоянно поддерживать температуру на уровне около -253 градусов.

Самым простым способом, который используют для получения газа, является электролиз обычной воды. Для промышленных масштабов нужны огромные энергозатраты на электролиз. С целью повышения рентабельности речь заходит об использовании ядерной энергетики. Но риски слишком высокие, потому инженеры и учёные думают над тем, как отыскать достойную альтернативу.

Чтобы перевозить и хранить полученный газ, применяются очень дорогие материалы и специальные механизмы, обладающие повышенным качеством и соответствующей стоимостью.

В процессе эксплуатации есть и другие сложности и препятствия, среди которых стоит выделить следующие:

  • Опасность взрыва. Если газ начнёт выходить из хранилища или просто из бака авто в условиях закрытого помещения, даже наличие небольшого источника энергии, такого как включённая лампочка в гараже, спровоцирует взрыв. А в случае нагретого воздуха ситуация становится ещё более опасной. Вещество обладает повышенной проницаемостью, что может спровоцировать попадание газа в коллектор выхлопной системы. В этой связи предпочтительнее для водорода использовать роторные двигатели;
  • Хранение. Оно предусматривает применение больших ёмкостей со специальными системами, защищающими от улетучивания. Также требуется защита от механических повреждений. В случае с грузовиками и большими автобусами это не проблема. А вот применительно к легковым авто появляются сложности, поскольку под бак отводится большое количество кубометров;
  • Негативное влияние и разрушение цилиндропоршневой группы. Это становится возможным, когда водород имеет высокую температуру и сталкивается с большими нагрузками. Страдает ЦПГ и смазка. Чтобы исключить эти проблемы, требуется специальный сплав и особые смазывающие компоненты, которые увеличивают стоимость изготовления водородных моторов. Отсюда и высокая цена самих автомобилей.

Проблем объективно много. Насколько они решаемые, говорить сложно. Хотя разработчики уверены, что изменить ситуацию в лучшую сторону возможно. И уже делаются большие шаги, подтверждающие подобные заявления.

Перспективы водорода в отрасли отопления

Многие ученые называют водород самым перспективным топливом, и это только подтверждается такими фактами:

Водород является самым распространенным топливным элементом во Вселенной, и десятый по запасам среди всех химических элементов на нашей планете. Если говорить проще, то проблем с запасами водорода точно не будет;

  • Несмотря на то, что это – газ, он абсолютно безвреден, и нетоксичен, поэтому люди, животные и даже растения не будут ощущать пагубного влияния;
  • В отопительном оборудовании, которое работает на водороде, продуктом горения выступает обычная вода, поэтому о вредных выхлопах и говорить не стоит;
  • Градус горения водорода равен 6000, это подтверждает большую теплоемкость данного химического элемента;
  • По весу, это топливо даже легче воздуха (в 14 раз), поэтому в случае возникновения утечки, топливный выбор улетучиться самостоятельно и очень быстро;
  • Килограмм водорода сегодня стоит лишь 2-7 американских долларов. Но килограмм это очень много, ведь плотность вещества составляет всего 0,008987 кг/м3;
  • Теплотворность 1 куба водорода равна 13 000 кДж. Конечно, этот показатель примерно в три раза ниже, чем у природного газа, но цена на водород ниже в десятки раз.

Из этого можно сделать вывод, что отопление домов водородом будет стоить не дороже, чем с применением обычных газовых котлов. Также владелец такого уникального оборудования не будет платить бешеные накрутки в карманы владельцев нефтегазовых компаний, нет необходимости и обустраивать дорогущий газопровод. При этом владелец избавит себя еще и от прохождения нудных и долгих бюрократических процедур по согласованию разных проектов.

В общем, водород можно действительно считать самым перспективным топливом. Все преимущества этого элемента уже испытали сотрудники аэрокосмических предприятий, которые используют водород в качестве ракетного топлива.

Мир неумолимо вступает в водородную эру!

Советник президента РФ академик РАН Сергей Глазьев подчеркивал: «Каждый из экономических циклов Кондратьева характеризуется своим энергоносителем: сначала дрова (органический углерод), уголь (углерод), потом нефть и мазут (тяжелые углеводороды), затем бензин и керосин (средние углеводороды), сейчас газ (легкие углеводороды), а основным энергоносителем следующего экономического цикла должен стать чистый водород!»

Применения водорода обширны, многогранны, энергетически выгодны, экологичны, и очень перспективны. Уже наши дети будут ездить на серийных автомобилях на водороде, использовать алмазные микропроцессоры, сделанные по водородной технологии, металлический водород совершит революцию в космонавтике, а развитие реакторов Росси — в энергетике!

Признание теории изначально гидридной Земли (В.Н.Ларина) приведёт к открытию ископаемых месторождений Н2, что сильно удешевит его получение. И не смотря на сопротивление «удушающих» Землю вредными выбросами нефтяных лоббистов, мы неизбежно вступаем в водородную эру!

Общая информация

Современные технологии позволяют использовать водород в качестве топлива. Такое топливо хватает на дольшее время. Водитель, использующий водородное топливо, может проехать на машине в два раза больше, чем при использовании топлива на другой основе. Но сейчас водородное топливо практически не используется. Только несколько изготовителей машин склоняются к выбору такого вида топлива.

Водород добывается тремя способами:

  1. Химический.
  2. Электролиз.
  3. Термохимический.

Каждый из способов, так или иначе, захватывает природные ресурсы. Поэтому этот способ считают экономически невыгодным. Использование природных ресурсов в качестве топлива встречает достаточное количество отрицательных отзывов среди защитников природы. Хоть способ и считается экологически чистым, но многие считают, что использовать природные ресурсы попросту нельзя.

Использование природных ресурсов при получении водорода, связано с тем, что в чистом виде водорода в природе сейчас нельзя встретить. А все современные способы добычи либо затрагивают природные ресурсы, либо большое количество финансов.

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. «Тёмный водород», в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы  значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

  • Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
  • Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
  • Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
  • «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
  • Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
  • Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
  • Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
  • БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
  • В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
  • Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
  • Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
  • Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
  • Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
  • Дизайнерский дом Pininfarina создал машину на водородном топливе H2 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Сколько раз прочитали статью: 5 096

Подводные аппараты на перекиси водорода

В 1938—1942 годах на Кильских верфях под руководством инженера Вальтера построили опытную лодку У-80 работавшую на перекиси водорода. На испытаниях корабль показал скорость полного подводного хода 28,1 узла. Полученные в результате разложения перекиси пары воды и кислорода использовали в качестве рабочего тела в турбине, после чего удаляли их за борт.

На рисунке условно показано устройство подводной лодки с двигателем на перекиси водорода

Всего немцы успели построить 11 лодок с ПГТУ.

После разгрома гитлеровской Германии в Англии, США, Швеции и СССР проводились работы с целью довести замысел Вальтера до практической реализации. Была построена советская подлодка (проект 617) с двигателем Вальтера в конструкторском бюро Антипина.

Знаменитая ПОДВОДНАЯ РАКЕТО-ТОРПЕДА ВА-111 «ШКВАЛ».

Тем временем успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей. И эти идеи успешно применили в торпедных двигателях. Walter HWK 573. (работающий под водой двигатель первой в мире управляемой противокорабельной ракеты «воздух-поверхность» GT 1200A для поражения корабля ниже ватерлинии). Планирующая торпеда (УАБ) GT 1200A имела подводную скорость 230 км/ч, являясь прототипом высокоскоростной торпеды СССР «Шквал». Торпеда ДБТ принята на вооружение в декабре 1957 года, работала на перекиси водорода и развивала скорость 45 узлов при дальности хода до 18 км.

Газогенератором через кавитационную головку создается воздушный пузырь вокруг корпуса объекта (парогазовый пузырь) и, вследствие падения гидродинамического сопротивления (сопротивления воды) и применения реактивных двигателей, достигается требуемая подводная скорость движения (100 м/с), превышающая в разы скорость самой быстрой обычной торпеды. Для работы используется гидрореагирующее топливо (щелочные металлы при взаимодействии с водой выделяют водород).

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.


Риваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.


Фото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Плюсы

  • Доказанная эффективность. Мало того, что первый водородный двигатель был разработан уже в XIX веке, в истории есть и другие примеры его использования. К примеру, водородное топливо генерировалось во времена Великой Блокады Ленинграда: им заправляли автомобили, перевозившие раненых, и съестные припасы.
  • Повышенный КПД. Многие почему-то игнорируют тот факт, что энергия, высвобождаемая сгоранием водородного топлива, гораздо больше, чем сгоранием того же бензина. Стоимость его производства при этом гораздо меньше.
  • Экологичность. Одной из самых распространённых проблем современных городов является загрязнённый воздух. Не последнюю роль в ухудшении ситуации сыграли бензиновые выхлопы, выделяющиеся из машины после переработки бензина. Водород решает эту проблему, так как основная субстанция, которая остаётся после его внутреннего сгорания – водяной пар настолько чистый, что при повторной конденсации его можно даже пить. Это доказал один из японских журналистов, испив химический остаток на испытаниях водородной модели Toyota.
  • Простая генерация. Первый опыт использования водородного топлива был зафиксирован ещё в 1806 году – один из французских химиков получил его, пустив электрический ток через воду. И всё! Вода – единственное, что необходимо для получения водородного топлива. Следовательно, и производящие его машины будут менее затратными, что может положительно сказаться на финансовом состоянии крупных промышленных предприятий.
  • Простота использования. Более того: для подачи топлива в мотор не нужны сложные системы топливоподачи, устанавливаемые в современные автомобили. Мало того, что они не благонадёжны, так ещё и повышают стоимость автомобилей. Если бы учёные задались целью разработать единую конфигурацию мотора, который без проблем бы работал на двух главных топливах, изменения не были бы радикальными, а вот производительность мотора увеличилась бы в разы. В теории, машина на водородном двигателе будет гораздо дешевле, но популярность бензиновых двигателей, к сожалению, не позволяет учёным начать двигаться в этом направлении.
  • Бесшумность. Водородное топливо позволяет автомобилю двигаться практически бесшумно.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H2 + O2 → 2H2O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H2O → 2H2 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Типы водородного двигателя

Хотя существует несколько модификаций водородных двигателей, все они делятся на два типа:

  • Вид агрегата с топливным элементом;
  • Доработанный ДВС, приспособленный для работы на водороде.

Рассмотрим каждый тип по отдельности: в чем их особенности.

Силовые установки на основе водородных топливных элементов

За основу работы топливного элемента взят принцип аккумулятора, в котором происходит электрохимический процесс. Единственное отличие водородного аналога – более высокий КПД (в некоторых случаях более 45 процентов).

Топливная ячейка представляет собой одну камеру, в которую помещены два элемента: катод и анод. Оба электрода покрыты платиной (или палладием). Между ними расположена мембрана. Она делит полость на две камеры. В полость с катодом подается кислород, а во вторую – водород.

В результате происходит химическая реакция, результатом которой является объединение молекул кислорода и водорода с выделением электричества. Побочный эффект от процесса – вода и выделившийся азот. Электроды топливных элементов подключены к электроцепи автомобиля, в том числе и электромотору.

Водородные двигатели внутреннего сгорания

В этом случае, хотя мотор и называется водородным, он имеет идентичное строение, что и обычный ДВС. Единственное отличие – происходит сгорание не бензина или пропана, а водорода. Если заправлять баллон водородом, то есть одна проблема – этот газ снизит эффективность обычного агрегата приблизительно на 60 процентов.

Вот несколько других проблем, с которыми связан переход на водород без модернизации мотора:

  • Когда ВТС будет сжиматься, газ будет вступать в химическую реакцию с металлом, из которого изготовлена камера сгорания и поршень, а нередко это может происходить и с моторным маслом. Из-за этого в камере сгорания образуется другое соединение, которое не отличается особой способностью к качественному сгоранию;
  • Зазоры в камере сгорания должны быть идеальными. Если где-то топливная система имеет хотя бы минимальную утечку, при контакте с раскаленными предметами газ легко воспламенится.

Мотор для Honda Clarity

По этим причинам водород практичней применять в качестве топлива в роторных моторах (в чем их особенность, читайте здесь). Впускной и выпускной коллекторы таких агрегатов расположены отдельно друг от друга, поэтому газ на впуске не раскаляется. Как бы то ни было, пока моторы модернизируются так, чтобы обойти проблемы использования более дешевого и экологически чистого топлива.

Генерация водорода из глубин Черного моря

Бог одарил землю Крыма не только красивейшей и разнообразной природой, но и достаточными запасами различных ископаемых, в том числе и углеводородов. Но наш полуостров буквально «купается» в самом большом на планете водном хранилище природных газов, коим является Чёрное море.

Глубинные слои — ниже 150м, состоят из водородосодержащих соединений, основную часть которых составляет сероводород. По приблизительным оценкам, общее содержание сероводорода в Черном море может достигать 4.6 млрд. т, что, в свою очередь, служит потенциальным источником 270 млн. т водорода!

Запатентованы несколько способов разложения сероводорода с получением водорода и серы (H2S <=> H2 + S – Q), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать его с выделением водорода и образованием серосодержащих соединений на поверхности материала, при давлении 15 атмосфер и температуре 400oС.

Наиболее перспективным, представляется разработка специальных гидрофобных мембран-фильтров, отделяющих водород от других газов прямо на глубине. Ведь мельчайшие из молекул легко просачиваются через металлы и даже в гранитных массивах живут колонии бактерий питающихся водородом!

Давайте помечтаем… Представим себе, что лет через десять на одном из мысов южного побережья Крыма, где морское дно резко понижается до глубин более 200 метров, будет построена небольшая станция. Из моря к ней протянутся рукава труб, на концах которых будут находиться сепараторы сероводорода. Водород после очистки поступит в сеть заправок автотранспорта и на когенераторную теплоэлектростанцию. Рядом с заводом разместиться ферма, где в водородной атмосфере будут выращивать анаэробные микроорганизмы, митоз которых происходит на порядок быстрее их обычных собратьев. Из их биомассы будут производить корм для скота и удобрения.

Заключение

Пока можно только строить предположения о том, какими технологиями человечество будет пользоваться завтра. Перспективы энергетики на основе водорода оцениваются скептически многими учеными по причине небольшого спектра возможностей для применения. Но можно посмотреть на эту ситуацию с другой стороны. Если человеку свойственно развивать технологии для обустройства собственной жизни, взаимодействуя с силами природы, как можно отбрасывать возможность получения тепловой энергии в результате взаимодействия электричества и воды?

Глупо проходить мимо такой возможности. Если нельзя найти способ применения этому в современном мире, может, лучше задуматься о том, какой мир мы стремимся создавать? Водородный генератор для отопления частного дома и другие природные технологии обязательно необходимо развивать и использовать.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector