Генератор

Принцип действия

С принципом работы устройства разобраться не так уж сложно. Он заключается во вращении магнитной рамки с целью создания электрического поля. В процессе вращения рамки возникают магнитные линии, начинающие пересекать ее контур. Пересечение способствует образованию электрического тока.

Чтобы определить, куда движутся потоки электрической энергии, необходимо воспользоваться правилом буравчика. При этом стоит отметить, что на некоторых участках движение тока противоположное. Направления постоянно меняются при достижении очередного полюса, который расположен на магните. Такое явление называется переменным током, и доказать это условие способно подключение рамки к отдельному магнитному кольцу.

Зависимость между величиной тока в рамке и скоростью вращения ротора системы пропорциональная. Таким образом, чем сильнее будет вращаться рамка, тем больше электричества сможет поставить генератор. Такой показатель характеризуется частотой вращения.

Согласно установленным нормам, оптимальный показатель частоты вращения в большинстве стран не должен превышать 50 Гц. Это значит, что ротор должен выполнять 50 колебаний в секунду. Для вычисления параметра необходимо условиться, что один поворот рамки приводит к изменению направления тока.

Если вал успевает повернуться 1 раз за секунду, это означает, что частота электрического тока составляет 1 Гц. Таким образом, для достижения показателя в 50 Гц потребуется обеспечить правильное количество вращений рамки за секунду.

Зависимость в этом случае обратно пропорциональная. Таким образом, чтобы обеспечить частоту в 50 Гц, потребуется снизить скорость примерно в 2 раза.

Дополнительно стоит отметить, что в некоторых странах установлены другие нормы вращения ротора. Стандартным показателем частоты является показатель в 60 Гц.

Качество эксплуатации: от каких факторов зависит?

Есть некоторые важные параметры, без расчёта которых нельзя сделать правильный выбор.

Мощность.

Для этого надо заранее посчитать, какую мощность потребляют все устройства, установленные дома. Нагрузка от основных потребителей может быть активной и реактивной. Главное — учитывать некоторый запас, применять соответствующие коэффициенты.

Что внутри?

1-1,3 — в таком диапазоне находится коэффициент активной нагрузки для бытовых электрических приборов. 3 — тот же параметр, но для устройств, работающих с реактивной нагрузкой.

Важно! Нужно сложить все виды нагрузки друг с другом, чтобы понять, какой агрегат требуется в том или ином случае. 15% откладывают про запас сверху

Ведь со временем иногда увеличивают количество электрических приборов. При пуске некоторые приборы потребляют гораздо больше энергии, чем указано в сопроводительной документации.

Разновидность нагрузки, с которой работает генератор.

Бывают сети с напряжением 220 и 380 В. Многие думают, что последний вариант — универсальный, потому ему и следует отдать предпочтение в большинстве случаев. Но лучше всё-таки остановить выбор на однофазной сети, если нет планов по подключению приборов с соответствующими характеристиками.

Иначе при монтаже электропроводки возникают проблемы, которые не удаётся предвидеть сразу.

Разновидности используемого топлива для генерирования тока.

Надёжность большинства современных установок остаётся практически одинаковой. Существенное отличие — только в стоимости приборов и источников энергии для них.

Крепление и привод

За работу генератора отвечает шкив двигателя посредством работы ременной передачи. Количество оборотов агрегата зависит от диаметров различных шкивов, входящих в состав конструкции основного устройства.

В современных моделях транспортных средств встречается поликлиновый ремень, обладающий большой гибкостью. С его помощью удается привести в действие шкивы минимального диаметра, благодаря чему увеличиваются обороты автогенератора. Существует несколько способов натяжения такого ремня, что очень удобно. Выбор способа зависит от модели транспортного средства, а также от конструкции натяжителя. Обычно предпочитают натягивать ремень специальными шариковыми роликами.

Классификация генераторов

Существует несколько признаков, на основании которых электрический генератор можно отнести к одной из разновидностей:

  • Сфера применения.
  • Режимы работы.
  • Фазность.
  • Автономность.

Эксплуатация По каждому из признаков надо изучить модель заранее, тогда и выбор проще будет сделать.

Автономность

Полная независимость от централизованных источников энергии — одно из главных преимуществ, которыми обладают современные генераторы. В зависимости от этого показателя, модели делятся на мобильные либо стационарные.

Стационарные

Речь идёт о генераторных станциях, в основе работы которых — дизельные двигатели. Подходят для снабжения электрической энергии потребителей, удалённых от других подобных объектов. Обеспечивают снабжение током на тех территориях, где даже малейшая остановка производственных процессов приведёт к серьёзным негативным последствиям.

Мобильные

Чаще всего эти агрегаты — самые компактные. Допускают перемещение в пространстве установки. У передвижных станций сфера применения довольно широка:

  1. Электросварка.
  2. Местное освещение.
  3. Снабжение током бытовых электроприборов, и так далее.

Обслуживание и ремонт Внутри оборудования размещают двигатель внутреннего сгорания, который способен работать на дизельном топливе либо бензине. Агрегаты отличаются друг от друга по габаритам. Одного человека хватает, чтобы перемещать только самые маленькие устройства. Но есть мобильные варианты, монтаж которых проводят на автомобильных прицепах.

Фазность

Агрегаты разделяют на трёх- и однофазные в зависимости от внутренней структуры устройств.

Однофазные

Отличаются способностью производить однофазный ток. Питание бытовых приборов — главное назначение устройств. Обычно аппараты выпускают мобильными, чтобы с ними было проще обращаться. Частные домовладения — объекты, внутри которых однофазные агрегаты можно встретить чаще всего. Например — для удовлетворения различных нужд на бытовом уровне.

Трёхфазные

Питание силового электрооборудования — вот в чём состоит основная функция. Иногда происходит разделение такой энергии по нескольким фазам. Для питания электропроводки это очень удобное решение, позволяющее развести линию на несколько частей.

Интересно! Главное — чтобы мощность потребления у всех линий оставалась примерно одинаковой. Генератор быстро выходит из строя, если между значениями образуется серьёзная разница.

Режимы работы

Основные и резервные — две главные разновидности режимов работы согласно этой классификации.

Основные

Такие аппараты созданы, чтобы работать на постоянной основе. Группу промышленных установок представляют мощные электрогенераторы, снабжённые дизельными двигателями. Актуальны для объектов, которым наличие электрической энергии требуется постоянно.

Резервные

По названию легко понять, что такие электрические генераторы применяются лишь в некоторых, исключительно крайних случаях. Например, если централизованное электроснабжение отключают на некоторое время. Такие приборы могут включаться, если срабатывает реле, реагирующее на уменьшение напряжения. Беспрерывная работа допустима только на протяжении нескольких часов.

Сфера применения

Генераторы выпускают с расчётом на два основных направления — бытовые условия либо промышленные объекты.

В быту

Выбор бытовых генераторов на современном рынке порадует любого потребителя, вне зависимости от масштабов и запросов. Обычно выбирают однофазные установки, способные наладить бесперебойное снабжение электрическим током при аварийных ситуациях. Питание выносного электрооборудования — ещё одна сфера применения. Качество тока становится особенно важным показателем, если речь идёт о бытовых электроприборах, применяющих цифровую элементную базу. В этом случае энергия должна обладать такими параметрами: 220 В, 1 А, 50 Ггц.

Вам это будет интересно Виды и применение греющего электрического кабеля

На даче

При электросварочных работах применяют установки, обладающие повышенной мощностью. Преимущество в том, что для формирования электромеханической дуги вырабатывается ток с серьёзной силой.

Обратите внимание! Если в инструкции не описано сразу применение для электросварки, то стоит отказаться от подобной идеи. Иначе генераторы быстро портятся

Промышленные объекты

Чаще речь идёт о независимых мощных стационарных установках. Они актуальны для промышленных предприятий и целых жилых районов, больниц, общественных учреждений с высокой проходимостью. Тогда такие механические приспособления актуальны.

Реле регулятора напряжения

Интегральный регулятор напряжения необходим, чтобы в бортовую сеть подавалось напряжение, соответствующее ее номинальным параметрам. Устройство простейшего генератора таково, что при увеличении частоты вращения скорость изменения магнитного потока ротора пропорционально увеличивается, как и выходное напряжение. Если этим процессом не управлять, то напряжение достигнет той величины, при которой все бортовые системы выйдут из строя.

Принцип работы реле регулятора генератора состоит в том, что при увеличении частоты вращения статора, оно через специальный датчик, присоединенный к цепи статора, отслеживает опасное увеличение напряжения. При помощи механической или электронной системы управления контактами, реле уменьшает ток, подаваемый на обмотку ротора, в результате чего увеличение частоты компенсируется снижением силы магнитного поля, и значение напряжения остается в норме.

Какой ток выдает генератор автомобиля?

На генераторах имеется заводская маркировочная табличка, указывающая предельный ток, который может выдать устройство. Для замера реального тока используется мультиметр и специальные клещи, надеваемые на проводку генератора. Клещи позволяют с высокой точностью определить силу тока в проводнике без разрушения изоляционного слоя.

После установки измерителя двигатель запускается и выводится на высокие обороты, обеспечивающие максимальную отдачу генератора. Затем требуется включать потребители и отслеживать изменение тока в проводке. Эти же потребители включаются одновременно, при этом отмечается изменение параметров тока в цепи. Результат не может быть меньше суммы, полученной при раздельном подключении устройств.

Замер тока, необходимого для работы обмоток самовозбуждения, производится на проводе, идущем к этим обмоткам. Измерение ведется при высоких оборотах коленчатого вала. Нормой считается ток в пределах 3-7 А.

Магнитные генераторы газового типа

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Общие сведения

С ростом научного прогресса и получением электрического тока, являющимся одним из основных видов энергии, жизнь человека стала намного комфортнее. Ведь благодаря ему, а точнее, его работе, приводятся в движение различные механизмы, освещаются и обогреваются помещения и так далее.

Ток в проводнике появляется за счёт электродвижущей силы (ЭДС), заставляющей перемещаться частицы, несущие заряд в проводнике. Если проводник испытывает воздействие магнитного поля, то это явление называется электромагнитной индукцией.

Иными словами, если соблюдается следующее условие: двигается проводник в магнитном поле или электромагнитное поле совершает движение вокруг проводника, то в последнем появляется электрический ток. В результате этого явления были созданы трансформаторы, электродвигатели и генераторы.

Генератор тока является электрической машиной, преобразующей механическую энергию в электрическую. Это примитивное устройство, состоящее из проводника, представляющего замкнутый контур и вращающийся между полюсами магнита.

В современных генераторах этот контур содержит минимум три обмотки, необходимые для создания большей ЭДС. Для чёткого понимания предназначения и процессов, протекающих при преобразовании электроэнергии, нужно ознакомиться с устройством и принципом действия генератора (ЭГ).

Область применения

Синхронные генераторы – устройства, предназначенные для добычи переменного тока. Встретить такие устройства можно на различных станциях:

  • атомных;
  • тепловых;
  • гидроэлектростанциях.

А также агрегаты активно используются в транспортных системах. Их применяют в различных автомобилях, в судовых системах. Синхронный генератор способен работать как в автономном режиме, отдельно от электрической сети, так и одновременно с ней. При этом удается подключить сразу несколько агрегатов.

Преимуществом станций, вырабатывающих переменный ток, является возможность обеспечить выделенное пространство электроэнергией. Удобно, если объект находится далеко от центральной сети. Поэтому агрегаты пользуются спросом у владельцев ферм, отдаленных от города населенных пунктов.

Реакция якоря

В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.

Реакция якоря в СГ при разнородных видах нагрузки

При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.

Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.

Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.

Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.

Принцип работы автомобильного генератора

В основу принципа работы автомобильного генератора положен закон электрической магнитной индукции. Поворотом ключа, установленного в замок зажигания производится подача питания — электрического токаот аккумулятора на обмотку возбуждения генератора. В последней в свою очередь производится наводка магнитного поля, что под воздействием электрической движущей силы — ЭДС приведет во вращение подвижную часть устройства, называемую ротором.

В конечном результате на выводных проводниках возникнет напряжение. И за счет специального устройства — выпрямительного блока, величина напряжения на выходе будет постоянной во времени. Данный блок выполняет важную роль — стабилизирует напряжение в тяжелых условиях эксплуатации и переменного числа оборотов мотора.

На рисунке 2 изображен классический регулятор напряжения автомобильного генератора. Если даже предположить выход из строя данной детали, то на выходной клемме будет напряжение напрямую зависеть от числа оборотов двигателя и достигать несколько десятков вольт. Этого будет достаточно для вывода из строя внешних осветительных ламп или другого оборудования приборной панели.

Рисунок 2 — Регулятор напряжения

Практическое применение

Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Неисправности автогенераторов и способы их устранения

При работе генераторов могут возникать неисправности механического и электрического характера. Зачастую одна вовремя не исправленная поломка становится причиной других.

Признаки повреждения генератора:

  • мигание или постоянная работа лампы зарядки при работающем моторе;
  • недостаточная зарядка или перезаряд аккумулятора;
  • тусклый свет внешней световой сигнализации;
  • пульсации свечения ламп;
  • значительное увеличение яркости свечения ламп при повышении оборотов;
  • посторонние звуки, источником которых является генератор или привод.

Механические поломки

Распространенные неисправности механического характера:

  • появление трещин на приводном шкиве;
  • обрыв ремня привода;
  • износ подшипников якоря, который приводит к заклиниванию генератора.

Трещины и сколы на шкиве обнаруживаются при визуальном осмотре узла. Острые кромки начинают разрушать приводной ремень, который может сойти со шкива по поврежденным кромкам. Поломанный или лопнувший шкив требуется заменить новым, ремонт узла невозможен. Новый шкив должен иметь такие же геометрические параметры, как и изношенный.

Поврежденные подшипники якоря начинают издавать при работе характерный свист. Затягивать с ремонтом не следует, поскольку нарушается режим работы генератора из-за изменения зазора между якорем и статором. В итоге якорь может заклинить, что приведет к обрыву ремня и повреждениям щеток и обмотки.

Электрические поломки

Поломки электрической части генераторов:

  • истирание токосъемных щеток;
  • протирание коллекторной части ротора генератора;
  • выход из строя регулятора напряжения;
  • межвитковые замыкания обмотки статора;
  • выгорание выпрямительного диодного моста;
  • разрушение соединительной проводки;
  • обгорание или окисление мест подключения проводки.

Для проверки работоспособности генератора применяется мультиметр или вольтметр, предназначенный для измерения постоянного напряжения 0-20 В. Перед началом замеров рекомендуется прогреть агрегат, дав ему поработать 10-15 минут при холостых оборотах двигателя и работающем потребителе (например, ближнем свете фар). Замер напряжения между положительной клеммой генератора и массой автомобиля должен показать значение в пределах 13,5-14,5 В. Более точная информация имеется в инструкции по ремонту и обслуживанию машины. При отклонении напряжения от норматива требуется замена реле-регулятора.

Проверка напряжения на клеммах батареи позволяет обнаружить повреждения соединительной проводки. Для полноценного замера требуется увеличить обороты двигателя до высоких и подключить мощные потребители энергии (например, дальний свет фар, обогревы стекол и сидений). В этом случае напряжение должно быть близким к значению на реле-регуляторе. В противном случае требуется провести проверку проводов и точек подключения.

Исправность диодного моста проверяется путем установки мультиметра на положительный вывод генератора и массу в режиме замера переменного тока. Значение напряжения должно находиться в пределах до 0,5 В. Более высокое напряжение является признаком неисправности диодного моста.

Процесс замены генератора на Форд Фокус 2 показан в видео, предоставленном каналом «Азбука Форд».

Замер пробоев обмоток генератора производится при отключенном аккумуляторе и отсоединенной от положительной клеммы устройства проводке. Тестер, переключенный в режим амперметра, подключается между клеммой и проводкой. Допустимым считается значение до 0,5 мА. При повышенном токе возможен пробой деталей диодного моста либо обмоток.

Для проверки обмоток возбуждения необходимо снять генератор с автомобиля. Работы ведутся при удаленном регуляторе напряжения и щеточном узле. Перед началом проверки контактные кольца очищаются от грязи. Тестирование выполняется мультиметром, переведенным в режим омметра. Подключение ведется к контактным кольцам. Нормальное значение сопротивления находится в интервале 5-10 Ом. Для замера пробоя на массу омметр цепляется к кольцам и корпусу. В исправном состоянии значение сопротивления будет бесконечным, при иных значениях — имеется пробой.

Категорически запрещается проверять работу генераторов методом короткого замыкания. Подобные действия приводят к выходу из строя не только агрегата, но и электронных блоков. Диагностику устройства рекомендуется проводить на стендах, имеющихся в специализированных центрах. Самостоятельные действия могут стать причиной дорогостоящего ремонта.

Особенности установки


Использование дизельного генератора

Потенциальный владелец генератора переменного тока перед приобретением должен озаботиться подготовкой места для его установки. Независимо от того, где будет установлен такой агрегат, в помещении или на свежем воздухе, для него понадобится ровная и твердая площадка. Установка электрогенератора на неровной площадке приведет к увеличению вибрации, что ускорит износ деталей и может спровоцировать выход дорогостоящего устройства из строя.

Устанавливая генератор в помещении, важно предусмотреть наличие вытяжной вентиляции. Кроме того, во время работы агрегата рекомендуется оставлять дверь помещения открытой, что в свою очередь потребует установить в дверном проеме решетку, перекрывающую посторонним, а главное детям, доступ в опасную зону

Соединяют электрогенератор с электросетью в строгом соответствии с требованиями, изложенными в инструкции по эксплуатации. При этом электрический кабель необходимо подключить после вводного автомата и электросчетчика.

Устройство генератора переменного тока

Схематическое устройство однофазного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение «Славянка», сочетающее шесть обмоток в виде одной «звезды» и одного «треугольника» на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.

К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Заключение

Даже самое общее представление об устройстве и принципах работы автомобильного генератора может помочь избежать неисправностей электрооборудования. Генератор начинает работать после запуска двигателя и выполняет функции основного источника тока в автомобиле.

В процессе эксплуатации автомобиля необходимо тщательно следить за натяжением приводного ремня, которое влияет на положение генератора. На ряде современных автомобилей агрегат закреплен прочно, и изношенный клиновый или поликлиновый ремень необходимо сразу менять. Поддержание генератора в исправном состоянии позволит избежать крупных трат на капитальный ремонт авто.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector