Условные обозначения на гидравлических схемах металлорежущих станков
Содержание:
- Содержание
- Компоненты гидравлической системы
- Определение потерь давления в трубах
- Я ИНЖЕНЕР, а мог бы зарабатывать деньги )))
- Зачем нужна гидравлическая схема?
- Символы клапана — 1
- Символы клапана — 2
- Что это, назначение и принцип работы устройства
- В чем заключается суть подобного расчета?
- Область применения
- Обозначение элементов на пневмосхемах
- Устройство и принцип работы гидропривода
Содержание
ВВЕДЕНИЕ
Лекция
1. ОБЩАЯ ХАРАКТЕРИСТИКА ГИДРОПРИВОДА
1.1.
Структурная схема гидропривода
1.2.
Классификация и принцип работы
гидроприводов
1.3.
Преимущества и недостатки гидропривода
Лекция
2. РАБОЧИЕ ЖИДКОСТИ ДЛЯ ГИДРОСИСТЕМ.
ГИДРАВЛИЧЕСКИЕ ЛИНИИ
2.1.
Характеристика рабочих жидкостей
2.2.
Выбор и эксплуатация рабочих жидкостей
2.3.
Гидравлические линии
2.4.
Соединения
2.5.
Расчет гидролиний
Лекция
3. НАСОСЫ И ГИДРОМОТОРЫ
3.1.
Некоторые термины и определения
3.2.
Гидравлические машины шестеренного
типа
3.3.
Пластинчатые насосы и гидромоторы
3.4.
Радиально-поршневые насосы и гидромоторы
3.5.
Аксиально-поршневые насосы и гидромоторы
Лекция
4. ГИДРОЦИЛИНДРЫ
4.1.
Механизмы с гибкими разделителями
4.2.
Классификация гидроцилиндров
4.3.
Гидроцилиндры прямолинейного действия
4.4.
Расчет гидроцилиндров
4.5.
Поворотные гидроцилиндры
Лекция
5. ГИДРОРАСПРЕДЕЛИТЕЛИ
5.1.
Общие сведения
5.2.
Золотниковые гидрораспределители
5.3.
Крановые гидрораспределители
5.4.
Клапанные гидрораспределители
Лекция
6. РЕГУЛИРУЮЩАЯ И НАПРАВЛЯЮЩАЯ
ГИДРОАППАРАТУРА
6.1.
Общие сведения о гидроаппаратуре
6.2.
Напорные гидроклапаны
6.3.
Редукционный клапан
6.4.
Обратные гидроклапаны
6.5.
Ограничители расхода
6.6.
Делители (сумматоры) потока
6.7.
Дроссели и регуляторы расхода
Лекция
7. ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА ГИДРОСИСТЕМ
7.1.
Гидробаки и теплообменники
7.2.
Фильтры
7.3.
Уплотнительные устройства
7.4.
Гидравлические аккумуляторы
7.5.
Гидрозамки
7.6.
Гидравлические реле давления и времени
7.7.
Средства измерения
Лекция
8. ГИДРАВЛИЧЕСКИЕ СЛЕДЯЩИЕ ПРИВОДЫ
(ГИДРОУСИЛИТЕЛИ)
8.1.
Общие сведения
8.2.
Классификация гидроусилителей
8.3.
Гидроусилитель золотникового типа
8.4.
Гидроусилитель с соплом и заслонкой
8.5.
Гидроусилитель со струйной трубкой
8.6.
Двухкаскадные усилители
Лекция
9. СИСТЕМЫ РАЗГРУЗКИ НАСОСОВ И РЕГУЛИРОВАНИЯ
ГИДРОДВИГАТЕЛЕЙ
9.1.
Способы разгрузки насосов от давления
9.2.
Дроссельное регулирование
9.3.
Объемное регулирование
9.4.
Комбинированное регулирование
9.5.
Сравнение способов регулирования
Лекция
10. СХЕМЫ ТИПОВЫХ ГИДРОСИСТЕМ
10.1.
Гидросистемы с регулируемым насосом и
дросселем
10.2.
Гидросистемы с двухступенчатым усилением
10.3.
Гидросистемы непрерывного (колебательного)
движения
10.4.
Электрогидравлические системы с
регулируемым насосом
10.5.
Гидросистемы с двумя спаренными насосами
10.6.
Питание одним насосом двух и несколько
гидродвигателей
Лекция
11. ПНЕВМАТИЧЕСКИЙ ПРИВОД
11.1.
Общие сведения о применении газов в
технике
11.2.
Особенности пневматического привода,
достоинства и недостатки
11.3.
Течение воздуха
11.4.
Исполнительные пневматические устройства
Лекция
12. МОНТАЖ И ЭКСПЛУАТАЦИЯ ОБЪЕМНЫХ
ГИДРОПРИВОДОВ
12.1.
Монтаж объемных гидроприводов
12.2.
Эксплуатация объемных гидроприводов
в условиях низких температур
12.3.
Основные неполадки в гидросистемах и
способы их устранения
Компоненты гидравлической системы
Основные компоненты
Гидравлическая система состоит из многих частей. Основными деталями являются насос и привод. Насос подаёт масло, преобразуя механическую энергию в энергию давления и кинетическую энергию. Привод является частью системы, которая преобразует гидравлическую энергию обратно в механическую энергию для выполнения работы. Другие детали, кроме насоса и привода, необходимы для полной работы гидравлической системы.
Бак: хранение масла
Клапаны: контроль за направлением и величиной потока или ограничение давления
Линии трубопровода: соединение деталей системы
Давайте посмотрим на две простые гидравлические системы.
Пример 1, гидравлический домкрат
Что вы видите на рисунке, называется гидравлический домкрат. Когда вы прилагаете усилие к рычагу, ручной насос подаёт масло в цилиндр. Давление этого масла давит на поршень и поднимает груз. Гидравлический домкрат во многом напоминает гидравлический рычаг Паскаля. Здесь добавлен гидравлический бак. Обратный клапан установлен, чтобы держать масло в баке и цилиндре между ходом поршня.
На верхнем рисунке, давление удерживается, обратный клапан закрыт. Когда ручка насоса тянется вверх, впускной обратный клапан открывается и масло попадает из бака в камеру насоса.
Дальше ручка насоса двигается вниз. Давление масла закрывает впускной обратный клапан, но открывает выпускной обратный клапан. При этом, масло поступает в цилиндр и давит на поршень снизу вверх.
Нижний рисунок показывает открытый запорный клапан для соединения бака и цилиндра, позволяя маслу перетекать в бак, при этом поршень движется вниз.
Пример 2, работа гидравлического цилиндра
1. Во первых, имеется гидравлический бак, заполненный маслом и подсоединённый к насосу.
2. Далее, насос необходим для создания потока, но насос не всасывает масло из бака. Масло попадает в насос под действием силы тяжести.
3. Насос работает и качает масло
Важно понять, что насос перемещает только объём. Объём устанавливает скорость гидравлического действия
Давление создаётся нагрузкой и не создаётся насосом.
4. Шланг от насоса соединён с распределительным клапаном. Масло поступает из насоса к клапану. Работа данного клапана заключается в направлении потока или к цилиндру, или в бак.
5. Следующим шагом является цилиндр, который выполняет фактическую работу. Два шланга от распределительного клапана соединены с цилиндром.
6. Масло из насоса направляется в нижнюю полость поршня через распределительный клапан. Нагрузка вызывает сопротивление потоку, которое в свою очередь создаёт давление.
7. Система выглядит законченной, но это не так. Ещё необходима очень важная деталь. Мы должны знать, как защитить все компоненты от повреждения в случае внезапной перегрузки или другого происшествия. Насос продолжает работать и подавать масло в систему, даже если с системой произошло происшествие. Если насос подаёт масло и нет возможности для выхода масла, давление возрастает до тех пор, пока какая либо деталь не сломается. Мы устанавливаем предохранительный клапан, чтобы предотвратить это. Обычно он закрыт, но когда давление достигает установленной величины, предохранительный клапан открывается и масло течёт в бак.
8. Бак, насос, распределительный клапан, цилиндр, шланги соединения и предохранительный клапан являются основой гидравлической системы. Все эти детали необходимы.
Определение потерь давления в трубах
Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:
- потери в первичном контуре, обозначаемые как ∆Plk;
- местные издержки теплоносителя (∆Plм);
- падение давления в особых зонах, называемых “генераторами тепла” под обозначением ∆Pтг;
- потери внутри встроенной теплообменной системы ∆Pто.
После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.
Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.
Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.
- h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
- λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
- L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
- D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
- V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
- Символ g – это ускорение свободного падения, равное 9,81 м/сек2.
Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:
- V – скорость перемещения водных масс, измеряемая в метрах/секунду.
- D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
- Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.
Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.
Я ИНЖЕНЕР, а мог бы зарабатывать деньги )))
Цилиндр двухстороннего действия имеет подводы в поршневую и штоковую полость.
На рисунке показан четырех линейный к распределителю подведено четыре линии А, В, Р, Т , трех позиционный три окна распределитель.
Подобная схема гидросистемы с реверсивным регулируемым насосом 2 и гидравлически управлением производительностью по положению поршня 9 сервопривода представлена на рис. Для снижения давления в системе питания цилиндра 6 до требуемой величины применен редукционный клапан 4, установленный на входе в распределитель 5. В среднем положении распределителя 6, представленного на рис.
Для снижения давления в системе питания цилиндра 6 до требуемой величины применен редукционный клапан 4, установленный на входе в распределитель 5. По мере повышения давления в полости А поршень перемещается вправо, за ним следует золотник, все более дросселируя поток жидкости. Гидросистема с регулируемым реверсивным насосом Система снабжена вспомогательным насосом 5, питающим систему регулирования управления подачи основного рабочего насоса, а также осуществляющим его подпитку. При подаче масла в поршневую полость цилиндра 1 шток 3 будет перемещаться влево.
Если на насосе показаны две стрелки, значит этот агрегат обратимый и может качать жидкость в обоих направлениях. Золотник пружиной удерживается в закрытом положении.
По мере понижения давления в системе поршень усилием своей пружины смещается вправо, и когда давление понизится до минимального рабочего значения, золотник закроется. При таком их положении масло от насоса через первую слева шейку золотника 1 поступает во внештоковую полость цилиндра 5, а из противоположной полости того же цилиндра через шейку золотника 2 и вторую шейку золотника 1 направляется в бак. Для обозначения гидромотра действую те же правила, что и для обозначения насоса: обратимость показывается двумя треугольными стрелками, возможность регулирования диагональной стрелой.
Обозначения гидравлических элементов на схемах
При необходимости в систему подпитки включается охладитель. Четырехсекционный гидрораспределитель обеспечивает подачу масла гидронасосом в цилиндр подъема, цилиндры наклона и в цилиндры сменных рабочих приспособлений. На рис. С этого момента давление более не увеличивается. На следующем ролике показан принцип работы гидрораспределителя.
Принципиальное устройство гидропривода погрузчика 1 — золотник цилиндра грузозахватного приспособления, 2 — гидрораспределитель, 3 — трубопровод, 4 — односторонний дроссель, 5— цилиндр подъема, 6 — дренажная труба, 7 — предохранительный клапан, 8 — лопастный насос, 9 — золотник цилиндра, 10 — золотник цилиндра наклона, 11 — постоянные дроссели, 12 — всасывающий трубопровод, 13 — бак для рабочей жидкости, 14 — сливной трубопровод, 15 — цилиндры наклона, 16 — цилиндры грузозахватного приспособления В некоторых гидросистемах устанавливают гидравлические дроссели — устройства, которые ограничивают скорость протекания рабочей жидкости на каком-либо участке гидросистемы, что уменьшает скорость перемещения штоков плунжеров гидроцилиндров. Жидкость поступает в цилиндр под давлением для подъема груза. На рисунке 9 представлена принадлежность различных инструментов к типам привода рабочих органов. Вся выкачанная насосом жидкость через клапан 3 возвращается назад в емкость Fig. Насос 3 снабжен фильтром 4, установленным на всасывающем трубопроводе, и предохранительным клапаном 6.
Работа гидрораспределителя
Зачем нужна гидравлическая схема?
Гидравлическая схема состоит из простых графических символов компонентов, органов управления и соединений. Рисование деталей стало более удобное, а символы универсальнее. Поэтому, при обучении каждый может понять обозначения системы. Гидравлическая схема обычно предпочтительна для объяснения устройства и поиска неисправностей.
Два рисунка показывают, что верхний является гидравлической схемой нижнего рисунка. Сравнивая два рисунка, заметьте, что гидравлическая схема не показывает особенности конструкции или взаимное расположение компонентов цепи. Назначение гидравлической схемы — показать назначение компонентов, места соединений и линии потоков.
Символы насоса
Основной символ насоса — это круг с чёрным треугольником, направленным от центра наружу. Напорная линия выходит из вершины треугольника, линия всасывания расположена напротив.
Таким образом, треугольник показывает направление потока.
Этот символ показывает насос постоянной производительности.
Насос переменной производительности обозначается на рисунке со стрелкой, проходящей через круг под углом 15°
Символы привода
Символ мотора
Символом мотора является круг с чёрными треугольниками, но вершина треугольника направлена к центру круга, чтобы показать, что мотор получает энергию давления.
Два треугольника используются для обозначения мотора с изменяемым потоком.
Мотор переменной производительности с изменением направления потока обозначается со стрелкой, проходящей через круг под углом 45°
Символы цилиндра
Символ цилиндра представляет прямоугольник, обозначающий корпус цилиндра (цилиндр) с линейным обозначением поршня и штока. Символ обозначает положение штока цилиндра в определённом положении.
Цилиндр двойного действия
Этот символ имеет закрытый цилиндр и имеет две подходящие линии, обозначенные на рисунке линиями.
Цилиндр однократного действия
К цилиндрам однократного действия подводится только одна линия, обозначенная на рисунке линией, противоположная сторона рисунка открыта.
Направление потока
Направление потока к и от привода (мотор с изменением направления потока или цилиндр двойного действия) изображается в зависимости от того, к какой линии подходит привод. Для обозначения потока используется стрелка.
Символы клапана — 1
1) Распределительный клапан
Основной символ распределительного клапана — это квадрат с выходными отверстиями и стрелкой внутри для обозначения направления потока. Обычно, распределительный клапан управляется за счёт баланса давления и пружины, поэтому на схеме мы указываем пружину с одной стороны и пилотную линию с другой стороны.
Обычно закрытый клапан
Обычно закрытый клапан, такой как предохранительный, обозначен стрелкой противовеса от отверстий напрямую к линии пилотного давления. Это показывает, что пружина удерживает клапан в закрытом состоянии до того, как давление не преодолеет сопротивление пружины. Мы мысленно проводим стрелку, соединяя поток от впускного к выпускному отверстию, когда давление возрастает до величины преодоления натяжения пружины.
Предохранительный клапан
На рисунке представлен предохранительный клапан с символом обычно закрытый, соединённый между напорной линией и баком. Когда давление в системе превышает натяжение пружины, масло уходит в бак.
Примечание:
Символ не указывает или это простой или это сложный предохранительный клапан
Это важно для указания их функций в цепи.. Рабочий процесс:
Рабочий процесс:
(а) Клапан всегда остаётся закрыт
(b) Когда давление появляется в главном контуре, тоже самое давление действует на клапан через пилотную линию и когда это давление преодолевает сопротивление пружины, клапан открывается и масло уходит в бак, тем самым снижая давление в главном контуре.
Обычно открытый клапан
Когда стрелка соединяет впускной и выпускной порты, значит клапан обычно открыт
. Клапан закрывается, когда давление преодолевает сопротивление пружины.
Клапан уменьшения давления обычно открыт и обозначается, как показано на рисунке ниже. Выпускное давление показано напротив пружины, чтобы устанавливать или прерывать поток, когда будет достигнута величина для сжатия пружины.
Рабочий процесс:
(а) Масло течёт от насоса в главный контур и А
(b) Когда выпускное давление клапана становится выше установленного давления, поток масла от насоса остановлен и давление в контуре А сохраняется. На него не действует давление главного контура.
(с) Когда давления в контуре А падает, клапан возвращается в состояние (а). Поэтому, давление в контуре А сохраняется, потому что охраняются условия (а) и (b)
Символы клапана — 2
2) РАСПРЕДЕЛИТЕЛЬНЫЙ КЛАПАН ПОТОКА
Обратный клапан
Обратный клапан открывается, чтобы дать двигаться маслу в одном направлении и закрывается, чтобы препятствовать движению масла в обратном направлении.
Золотниковый клапан
Символ распределительного золотникового клапана использует сложную закрытую систему, которая имеет отдельный прямоугольник для каждой позиции.
Клапан с четырьмя отверстиями
Обычно клапан с четырьмя отверстиями имеет два отделения, если этот клапан имеет две позиции или три отделения, если клапан имеет центральную позицию.
Символы управления рычагов
Символы управления рычагов отображают рычаг, педаль, механические органы управления или пилотной линии, расположены на краю отделения.
Что это, назначение и принцип работы устройства
Один из классов машин – гидравлический насос – является оборудованием по преобразованию механической энергии (вращения и крутящего момента приводного электрического двигателя; перемещения поршня при нажиме и поднятия рычага в ручной конструкции) в гидравлическую энергию жидкости (образование давления; подача или ход рабочего органа, например, штока гидроцилиндра).
Классификация и деление насосов на виды не влияет на общий принцип действия механизмов – вытеснение рабочей среды.
Работающий аппарат перемещает жидкость из полости всасывания (входной) в полость нагнетания (выходную) через изолированные камеры.
Выходящая из корпуса механизма жидкость имеет повышенное давление, обусловливающее ее перемещение по трубопроводу. Так как полости не соединены напрямую, устройства имеют идеальную адаптацию для работы в системах гидравлики с высоким давлением. Жидкость на выходе передает энергию поршню, перемещая его, или циркулирует в замкнутом контуре.
Гидравлические насосы высокого давления – обязательные элементы гидравлического привода, поэтому востребованы повсеместно. Основные области применения:
- Машиностроение, нефтепереработка, транспорт, сельское хозяйство, другие производственные и перерабатывающие отрасли.
- Оснащение мобильных моек, мастерских, предприятий коммунального хозяйства, строительных площадок.
- Системы чистки автомобилей, пожаротушения, подавления пыли, очистки труб, мытья улиц.
- Помпа – инженерная, погружная.
В чем заключается суть подобного расчета?
Главным отличием современных систем является специальный механизм, обеспечивающий гидравлический режим. Современные разработки и высококачественные материалы, которые используются сегодня в системах отопления, дают возможность своевременного реагирования на малейшее температурное колебание. Казалось бы, это очень выгодно: экономится энергия, а следовательно, наши затраты на отопления минимизируются. Но с другой стороны такое оборудование требует специальных знаний касаемо использования высокотехнологичной арматуры регулировки, а также других элементов при обустройстве системы.
Важная информация! Сочетание гидрорасчета и арматуры регулировки – это залог эффективности и работоспособности современных систем отопления.
Существуют некие обстоятельства, ввиду которых мы должны соблюдать приведенные выше условия.
- Теплоноситель должен подаваться в приборы нагрева в должном количестве – так вы добьетесь баланса тепла при условии, что вы будете задавать температуру в здании, а температура снаружи будет меняться.
- Отсутствие шума, долговечность и стабильность работы отопительной системы.
- Минимум затрат при эксплуатации, в частности, электроэнергии, которые направлялись бы на то, чтобы преодолеть гидравлическое сопротивление трубопровода.
- Затраты на установку системы нужно свести к минимуму, что в большей мере зависит от диаметра трубопровода.
Видео инструкция
Область применения
Область применения гидрораспределителей не ограничивается отдельными сферами деятельности. Практически в каждой гидравлической системе используется такой механизм. Наиболее распространенными являются золотниковые модели. Это связано с тем, что они простые в использовании, относительно дешевые и имеют небольшие размеры. С помощью таких распределителей обычно происходит управление движением компонентов двигателей.
Обычно встретить такие гидравлические распределители можно на:
- станках:
- крановых установках, подъемниках и манипуляторах;
- грузовых автомобилях;
- сельскохозяйственной технике;
- специальной технике, применяемой в строительстве и горнодобывающей промышленности.
Сфера применения таких моделей ограничивается лишь уровнем давления рабочей жидкости. При превышении дозволенных показателей система может не выдержать и выйти из строя из-за потери жидкости. При больших нагрузках стоит отдавать предпочтение клапанным устройствам.
Крановые модели редко применяются из-за небольшой пропускной способности. Они часто встречаются в комплексе с золотниковыми и клапанными устройствами в качестве дополнительного механизма.
При покупке распределителя следует изучить технические характеристики каждой модели. Иногда лучше всего посоветоваться со специалистом. От распределителя напрямую зависит надежность работы гидросистемы. Стоит отметить, что даже если правильно подобрать устройство, могут возникнуть проблемы, если неправильно его установить
Поэтому к такому важному этапу также стоит отнестись с особым вниманием
Обозначение элементов на пневмосхемах
Пневматические линии — трубопроводы, рукава высокого давления, гибкие шланги, каналы изображают линиями. В месте соединения нескольких каналов ставят точку.
Источник сжатого воздуха — энергии для пневматический системы обозначается окружностью с точкой в центре. В данном случае не конкретизируется, что это за источник. Это может быть пневматическая магистраль или компрессорная станция.
Обозначение компрессора
Источником сжатого воздуха чаще всего является , который имеет свое обозначение. Компрессор на схемах обозначается окружностью в которой расположен треугольник — стрелка, указывающий на направление движения воздуха.
Этот треугольник на пневматических схемах не закрашивается, в отличие от , где закрашены треугольник на насосах указывает на направление движения жидкости.
Пневмомотор
На обозначении пневматического мотора треугольная стрелка развернута в обратном направлении. Наличие дух стрелок указывает на реверсивность пневмомотора, то есть его способность работать в двух направлениях.
Если обозначение пневматического мотора перечеркнуто стрелкой, значит он регулируемый, то есть регулируется его рабочий объем.
Обозначение пневмоцилиндра
Пневматический двигатель, позволяющий преобразовать энергию сжатого воздуха в поступательное движение исполнительного механизма называется .
Пневматический цилиндр обозначается на схемах следующим образом.
Обозначение пневматического распределителя на схемах
Важный элемент на пневматических схемах — распределитель. Он позволяет направить сжатый воздух в различные каналы, например в полости пневматического цилиндра.
На схемах изображается в исходном положении, то есть при отсутствии на него управляющего воздействия.
Пневматический распределитель изображается несколькими прямоугольниками, в каждом из которых изображены стрелки отображающие какой канал с каким будет соединен. Для того, чтобы понять какие каналы соединять при переключении распределителя нужно мысленно передвинуть прямоугольники и посмотреть какие линии соединят стрелки.
Количество прямоугольников указывает на число позиций распределителя. К периметру прямоугольника подводятся линии отводимые от распределителя.
На схеме изображен двух позиционный (два окна) пятилинейный распределитель, его часто обозначают распределитель 5/2.
Тип управления распределителем также указывается на схеме.
Обозначения пневмоклапанов на схемах
Обратный клапан
Изображается в виде схематичного седла и запорного элемента — шарика, подпертого пружиной. Если поток прижимает шарик к седлу — клапан поток не пропустит. В обратном направлении поток воздуха через клапан пройдет.
Пружина на обратном клапане
может не изображаться.
Схема обозначения редукционного клапана показана на рисунке.
Пневматический предохранительный клапан
Предохранительный клапан защищает систему или отдельные элемнты (например ресиверы) от чрезмерно высокого давления. Схема предохранительного пневмоклапана показана на рисунке.
Дроссель на пневмосхемах
Пневматическое сопротивление обозначается на схеме следующим образом.
Если сопротивление регулируемое (дроссель), то на нем указывается стрелка.
Элементы пневмологики
Логические элементы позволяют организовать простейшие вычислительные процессы на основе пневматических элементов, и реализовывать системы пневмоавтоматики.
Элемент «ИЛИ»
— название элемента указывает на, то что элемент даст сигнал (поток сжатого воздуха) на выходе при наличии давления на входе 1 или на входе 2. Обозначается элемент следующим образом.
Элемент «И»
— данный элемент, подаст сигнал на выход только в случае наличия сигнала и на входе 1 и на входе 2. Пневматическая схема элемента «И» показана на рисунке.
Устройство и принцип работы гидропривода
Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.
На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.
Рис. 2.1 Схема изучаемого гидропривода.
Насос 1 предназначен для преобразования механического энергетического потока, поступающего от первичного энергетического источника 11 (электрического или топливного двигателя) в гидравлический энергетический поток, т.е. в поток рабочей жидкости под давлением, который в зависимости от положений (позиций) затворов распределителей 3, 4 может направляться непосредственно (холостой режим) или через один или оба вместе гидравлические двигатели 5, 6 (рабочий режим) в бак. При этом величина давления на выходе из насоса зависит от совокупности сопротивлений, встречаемых потоком рабочей жидкости на пути от насоса до бака. В тех случаях, когда распределители 3, 4 находятся в позициях «А» (см. рис. 2.1), поток рабочей жидкости от насоса 1 проходит в бак через упомянутые распределители, гидролинии и фильтр 9 (холостой режим). Величина давления на выходе из насоса составляет:
,
где – величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.
В тех случаях, когда по команде извне один или оба распределители 3, 4 переводятся в любое положение «Б» или «В», в работу включается (-ются), соответственно, один или оба гидродвигатели. Направление движения гидродвигателей зависит от положения «Б» и «В» их распределителей. Когда в работу включен только один гидродвигатель, например гидромотор 5, рабочее давление на выходе из насоса составит:
,
где – потери давления на преодоление сопротивления распределителя 3, 4
– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.
В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.
Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.
Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.
Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.