Как зависит мощность от объема двигателя
Содержание:
- Основные параметры электродвигателя
- Для чего необходимо знать мощность двигателя
- Практический аспект
- Общие характеристики двигателей
- Мощность через крутящий момент
- Классификация ДВС
- Что можно узнать о электродвигателе, зная его каталожные данные
- Практические измерения
- Мощность и КПД
- Л.с. и Н.м.
- Единицы измерения
- Расчет мощности 3-фазного асинхронного агрегата
- Плюсы и минусы большеобъемных двигателей
- Одинаковый объем совсем не означает одинаковые двигатели
- Классификация электродвигателей
- Заключение
Основные параметры электродвигателя
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
,
- где M – вращающий момент, Нм,
- F – сила, Н,
- r – радиус-вектор, м
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
,
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин-1
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)
Мощность электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Мощность электродвигателя постоянного тока
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
,
- где P – мощность, Вт,
- A – работа, Дж,
- t — время, с
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .
,
где s – расстояние, м
Для вращательного движения
,
где – угол, рад,
,
где – углавая скорость, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
,
- где – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (), Вт
- При этом
потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
,
- где J – момент инерции, кг∙м2,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)
1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)
Момент инерции связан с моментом силы следующим соотношением
,
где – угловое ускорение, с-2
,
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
,
где – постоянная времени, с
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.
Для чего необходимо знать мощность двигателя
Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая — мощность. Зная главные данные, вы сможете:
- Подобрать подходящие по номиналам тепловое реле и автомат.
- Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
- Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.
Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты — это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.
Практический аспект
Величина транспортного налога в России зависит от мощности двигателя. За расчетную единицу в этом случае берутся л. с.: налоговая ставка умножается на их количество. Число категорий оплаты зависит от региона. Например, в Москве для легковых автомобилей определяют 8 категорий (цены действуют на 2018 год):
- до 100 л. с. = 12 руб.;
- 101-125 л. с. = 25 руб.;
- 126-150 л. с. = 35 руб.;
- 151-175 л. с. = 45 руб.;
- 176-200 л. с. = 50 руб.;
- 201-225 л. с. = 65 руб.;
- 226-250 л. с. = 75 руб.;
- от 251 л. с. = 150 руб.
Цена приводится за 1 л. с. Соответственно, при мощности в 132 л. с. владелец автомобиля будет уплачивать 132 х 35 = 4620 руб. в год.
Раньше в Великобритании, Франции, Бельгии, Испании, Германии налог на транспортное средство зависел от количества «лошадей». С введением киловатта в одних странах (Франция) отказались от л. с. полностью в пользу новой универсальной единицы, в других (Великобритания) в качестве основы транспортного налога стали учитывать размеры автомобиля. В Российской Федерации традиция использовать старую единицу измерения еще соблюдается.
Кроме расчета транспортного налога, в России эта единица используется при страховании автогражданской ответственности (ОСАГО): при расчете премии при обязательном страховании владельцев транспорта.
Еще одно ее практическое применение, теперь уже технического характера — вычисление действительной мощности двигателя авто. При замерах используются термины брутто и нетто. Замеры брутто проводятся на стенде без учета работы сопутствующих систем — генератора, насоса системы охлаждения и т. д. Значение брутто всегда выше, но не показывает производимой мощности в нормальных условиях. Если указанные в документах киловатты переводить в л. с. этим способом, можно оценить только количество работы двигателя.
Watch this video on YouTube
Для точной оценки мощности механизма это непрактично, т. к. погрешность составит 10-25%. Фактические показатели двигателя при этом окажутся завышены, а при расчете транспортного налога и ОСАГО цены будут увеличены, т. к. оплачивается каждая единица мощности.
Измерение нетто на стенде направлено на анализ работы машины в нормальных условиях, со всеми вспомогательными системами. Величина нетто меньше, но точнее отражает мощность в нормальных условиях с воздействием всех систем.
Точнее измерить мощность поможет динамометр — устройство, подключаемое к двигателю. Он создает нагрузку на двигатель и замеряет количество энергии, выданное двигателем против нагрузки. Некоторые автосервисы предлагают воспользоваться динамометрическими стендами (диностендами) для подобных замеров.
Также мощность можно замерить самостоятельно, но с некоторой погрешностью. Подключив ноутбук кабелем к машине и запустив специальное приложение, можно зафиксировать мощность движка в кВт или л.с. при разной скорости движения. Преимущество такого варианта в том, что программа выдаст на экран погрешность вычислений сразу после контрольной оценки, а также сразу же произведет перевод из киловатт в лошадиные силы, если замер велся в единицах СИ.
Внесистемные единицы измерения постепенно уходят в прошлое. Значения мощности все чаще указываются в ваттах. Тем не менее, пока используется лошадиная сила, будет необходимость в ее конвертации.
Общие характеристики двигателей
Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:
- Крутящий момент.
- Мощность двигателя.
- Коэффициент полезного действия.
- Номинальное количество оборотов.
- Момент инерции ротора.
- Расчетное напряжение.
- Электрическая константа времени.
Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.
Мощность через крутящий момент
Один из способов вычисления мощности является определение зависимости крутящего момента мотора от количества оборотов.
Любой момент в физике – произведение силы на плечо ее приложения. Крутящий момент – произведение силы, которую может развивать двигатель для преодоления сопротивления нагрузки, на плечо ее приложения. Именно данный параметр определяет, насколько быстро мотор достигает своей максимальной мощности.
Крутящий момент можно определить, как отношение произведения рабочего объема на среднее эффективное давление в камере сгорания к 0,12566 (константа):
M = (Vрабочий * Pэффективное)/0,12566, где Vрабочий – рабочий объем мотора , Pэффективное – эффективное давление в камере сгорания .
Обороты двигателя характеризуют скорость вращения коленвала.
Используя величины крутящего момента и оборотов двигателя, можно использовать следующую формулу расчета мощности двигателя:
P = (M * n)/9549, где M – крутящий момент , n – скорость вращения вала [об/мин], 9549 – коэффициент пропорциональности.
Рассчитанная мощность измеряется в киловаттах. Чтобы перевести вычисленную величину в лошадиные силы, нужно результат умножить на коэффициент пропорциональности 1,36.
Этот способ вычисления состоит в использовании всего двух элементарных формул, поэтому считается одним из самых простых. Правда, можно поступить еще проще и воспользоваться онлайн-калькулятором, в который необходимо внести определенные данные об автомобиле и его двигательном агрегате.
Стоит заметить, что данная формула расчета мощности двигателя позволяет рассчитать лишь ту мощность, которая получается на выходе двигателя, а не ту, которая реально доход до колес автомобиля. В чем разница? Пока мощность (если представить ее как поток) доходит до колес, она испытывает потери в раздаточной коробке, например. Играют весомую роль и побочные потребители вроде кондиционера или генератора. Нельзя не упомянуть потери на преодоление сопротивления подъему, качению, а также аэродинамическому сопротивлению.
Частично этот недостаток компенсируется использованием других расчетных формул.
Классификация ДВС
По устройству:
- Поршневые двигатели — камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
- Газотурбинные двигатели — преобразованию энергии газов служит ротор с лопатками специального профиля.
- Роторно-поршневые двигатели — камеру сгорания ограничивает треугольный ротор, выполняющий функцию поршня.
- Реактивные двигатели — развиваемая двигателем мощность сразу используется для поступательного движения ракеты или самолёта, дополнительное преобразование в крутящий момент и трансмиссия отсутствует (двигатель является также движителем). Поэтому имеют наивысшие удельные мощностные показатели; являются единственными двигателями, способными выводить аппараты на орбиту.
- Турбореактивные двигатели — разновидность реактивных, в качестве окислителя использует атмосферный воздух, предварительно сжимаемый компрессорной частью. Ввиду этого может быть использован только на Земле. Обычно называют просто реактивными, например, «самолёт с реактивным двигателем». Можно рассматривать турбореактивный двигатель и как разновидность газотурбинного, так как он имеет все основные его части, кроме выходного вала.
- Турбовинтовые двигатели — газотурбинный, работающий на винт. Применяются в авиации, на умеренных скоростях имеют более высокий КПД, чем турбореактивные.
Схема работы четырёхтактного рядного четырёхцилиндрового поршневого двигателя внутреннего сгорания
По другим критериям:
- по назначению — на транспортные (автомобильные, судовые, самолётные), стационарные и специальные.
- по роду применяемого топлива — бензиновые и газовые двигатели, работающие на тяжёлом топливе дизели.
- по способу образования горючей смеси — внешнее (карбюраторные и инжекторные двигатели) и внутреннее (в цилиндре ДВС у дизелей и искровых с непосредственным впрыском).
- по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.
- устройству систем охлаждения (воздушное, жидкостное), и другим.
Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).
Что можно узнать о электродвигателе, зная его каталожные данные
Каталоги асинхронных двигателей содержат все необходимые данные для выбора двигателей.
В каталогах указываются: типоразмер двигателя, номинальная мощность для режима S1 (длительный режим), частота вращения при номинальной мощности, ток статора при номинальной мощности, коэффициент полезного действия при номинальной мощности, коэффициент мощности при номинальной мощности, кратность начального пускового тока, т. е. отношение начального пускового тока к номинальному, или кратность пусковой мощности, т. е. отношение полной мощности при пуске к номинальной мощности, кратность начального пускового момента, кратности минимального момента, динамический момент инерции ротора.
Кроме этих данных, относящихся к номинальному или пусковому режимам, в каталогах сообщаются более подробные данные об изменении КПД и коэффициента мощности при изменении нагрузки на валу электродвигателя. Эти данные приводятся в табличной или графической форме. Пользуясь этими данными, можно рассчитать также ток статора и скольжение при различных значениях нагрузки на валу.
В каталогах указываются также размеры, необходимые для установки двигателя на объекте и присоединения его к питающей сети.
На различных этапах создания, распределения, установки, эксплуатации и ремонта двигателей требуется различная детальность описания. Для большинства целей достаточна детализация на уровне типоразмера. Каталожное описание типоразмера двигателей серий 4А и АИ содержит признаки, обозначаемые максимально 24 символами.
Примеры. 4А160М4УЗ — асинхронный двигатель серии 4А, со степенью защиты IP44, станина и щиты чугунные, высота оси вращения 160 мм, выполнен в станине средней длины М, четырехполюсный, предназначен для эксплуатации в умеренном климате, категория размещения 3.
4АА56В4СХУ1 — асинхронный двигатель серии 4А со степенью защиты IP44, станина и щиты алюминиевые, высота оси вращения 56 мм, имеет длинный сердечник, четырехполюсный, сельскохозяйственная модификация по условиям окружающей среды, предназначен для эксплуатации в умеренном климате, категория размещения 1.
Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем.
Ряд номинальных мощностей электродвигателей: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,7; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.
Предельно допустимая мощность двигателя может изменяться при изменении режима работы, температуры охлаждающего агента и высоты установки над уровнем моря.
Двигатели должны сохранять номинальную мощность при отклонениях напряжения сети от номинального значения в пределах ±5 % при номинальной частоте сети и при отклонениях частоты сети в пределах ±2,5 % при номинальном напряжении. При одновременном отклонении напряжения и частоты сети от номинальных значений двигатели должны сохранять номинальную мощность, если сумма абсолютных отклонений не превосходит 6 % и каждое из отклонений не превышает нормы.
Синхронная частота вращения электродвигателя
Ряд синхронных частот вращения асинхронных двигателей установлен ГОСТ и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.
Динамический момент инерции ротора электродвигателя
Мерой инерционности тела при вращательном движении является момент инерции, равный сумме произведений масс всех точечных элементов на квадрат их расстояний от оси вращения. Момент инерции ротора асинхронного двигателя равен сумме моментов инерции многоступенчатого вала, сердечника, обмотки, вентилятора, шпонки, вращающихся частей подшипников качения, обмоткодержателей и нажимных шайб для фазного ротора и т. д.
Практические измерения
Самый доступный способ — проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания. Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели). Вам повезло, если у вас счетчик «Меркурий» — он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.
Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.
Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч — информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора). Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) — это и есть мощность двигателя. Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.
Мощность и КПД
Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.
Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.
Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.
Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.
Л.с. и Н.м.
Мощность и крутящий момент в моторе неразрывно между собой связаны, так как эта лошадиная сила происходит из крутящего момента. Формула для расчета мощности двигателя очень проста.
Изначально необходимо, силу, которая выражается в Ньютон-метрах (Н.м.) надо умножить на 0,7376, все это для того, чтобы перевести значения в Британскую и Американскую единицу измерения силы (Фунт-Фут), далее, воспользовавшись выше указанной формулой умножить таковые данные на количество оборотов двигателя (RPM), и, полученное после умножения значение необходимо разделить на число 5252. В итоге мы получим приблизительное к точности значение мощности самого двигателя, которое и будет выражаеться в лошадиных силах. На примере нижеуказанной формулы нами был сделан расчет мощности двигателя при силе 100 фунт-фут (1000 оборотов в минуту двигателя). Из этого примера видно, что при силе в 100 фунт-футов и 1000 оборотов в минуту мощность двигателя составила приблизительно около 19 л.с.
Разницу между мощностью и силой легко понять еще на одном примере. Допустим, что вы на автомобиле буксируете какой-то груз в гору, значит вам будет необходим низкий крутящий момент, но естественно потребуется и больше силы для более легкого буксирования. А если же вы хотите максимально быстро разогнать свой автомобиль с 0 до 100 км/час, то ему потребуется уже максимальное количество оборотов двигателя, а силы для такого разгона за короткий промежуток времени уже потребуется не так много. Но чем больше будет мощность двигателя, тем быстрее вы разгоните свою автомашину до 100 километров.
Поэтому различная грузовая и подъемная техника всегда, как правило оснащается дизельными двигателями, которые имеют большую тягу и не высокое максимальное количество оборотов двигателя, если их сравненивать с бензиновыми силовыми агрегатами. Дизельные двигатели способны передвигать транспортные средства имеющие огромную весовую массу. Но такой автотранспорт из-за небольшого количества л.с. очень медленно трогается и разгоняется.
Вот почему, такой автомобиль как Honda S2000 может сорваться с места и разогнаться до 100 километров в час примерно за 6 секунд, Dodge RAM 3500 может буксировать груз весом более 8000 тыс. килограмм (на прицепе). Это и есть абсолютное различие между крутящим моментом и лошадиной силой.
В транспортных средствах есть еще один элемент, который помогает автомобилю передавать крутящий момент на колеса,- это коробка переключения скоростей передач, которая предназначена для передачи максимального крутящего момента при определенной скорости. Например, тракторные тягачи и трактора для перевозки тяжелых грузов в прицепах оснащаются большими дизельными двигателями, у которых большой крутящий момент и большая сила, которая выражается в Ньютон-метрах (Н.м.). Но такие двигатели не имеют большого количества лошадиных сил. Такие двигатели созданы не для разгона транспортного средства до высокой скорости, как правило, они нужны в основном для перевозки тяжелых грузов. Некоторые такие тракторы оснащены 10 ступенчатыми коробками передач.
Так мощность и крутящий момент непосредственно близко связаны друг с другом. Лошадиная сила зависит от крутящего момента (силы Н.м.) и от количества оборотов в минуту двигателя.
Крутящий момент по своей сути,- это сила и мощность с которой можно сделать определенную работу. И чем меньше затрачивается времени для выполнения (или набора определенной скорости) такой работы, тем больше мощность самого автомобиля, которая выражается в лошадиных силах.
Единицы измерения
кВа в кВт — как правильно перевести мощность
В действующей системе единиц «СИ», утвержденной на международном уровне, мощность предлагается указывать в ваттах (один Вт = работе 1 Джоуль, сделанной за 1 секунду). Устаревшее обозначение «лошадиная сила» рекомендовано изъять из оборота. Для удобства применяют производные значения с определенными приставками (один киловатт (1кВт) = 10 в третьей степени ватт = 1 000 Вт).
Перевод 1 Вт в иные обозначения:
- килограмм-сила-метр в секунду (кгс*м/с) – 0,102;
- эрг в секунду (эрг/с) – 107;
- лошадиная сила (л.с.) метрическая/ английская – 1,36*10-3/ 1,34*10-3.
Расчет мощности 3-фазного асинхронного агрегата
Чтобы рассчитать полезную мощность на обмотке статора асинхронного 3-фазного двигателя, следует умножить фазное напряжение на фазный ток и на коэффициент мощности, а полученное значение мощности умножить на три (по количеству фаз):
Pстатора = 3 * Uф * Iф * cosφ.
Расчет мощности эл. двигателя, имеющей активный характер, то есть мощности, которая снимается с вала двигателя, производится так:
Pвыходная = Pстатора – Pпотерь.
В асинхронном двигателе имеют место следующие потери:
- электрические в обмотке статора;
- в стали сердечника статора;
- электрические в обмотке ротора;
- механические;
- добавочные.
Для расчета мощности трехфазного двигателя в обмотке статора, имеющей реактивный характер, необходимо сложить три составляющие данного типа мощности, а именно:
- реактивную мощность, расходуемую на создание потока рассеяния обмотки статора;
- реактивную мощность, расходуемую на создание потока рассеяния обмотки ротора;
- реактивную мощность, расходуемую на создание основного потока.
Реактивная мощность в асинхронном двигателе в основном расходуется на создание переменного электромагнитного поля, но часть мощности расходуется на создание потоков рассеяния. Потоки рассеяния ослабляют основной магнитный поток и снижают эффективность работы асинхронного агрегата.
Плюсы и минусы большеобъемных двигателей
Недостатки:
- изначальная цена автомобиля;
- высокий расход топлива;
- высокие траты на ТО (больше масла, больше антифриза и т.д.);
- большие затраты на капитальный ремонт;
- высокие налоги и таможенные пошлины (если машина ввозится из-за границы).
Преимущества:
- высокая мощность автомобиля;
- большой ресурс самого двигателя;
- комфорт при езде;
- реже приходится переключать передачи на МКПП;
- безопасность при обгоне;
- такие двигатели быстрее и лучше прогреваются в холодный период.
Большие бензиновые атмосферные силовые агрегаты менее требовательны к качеству топлива, чем турбированные малообъемники.
Несколько слов о турбированных моторах и атмосферных
Стоит понимать, что обычный атмосферный ДВС более надежен. Бензиновый турбо-двигатель 1.8-2 литра, имеющий мощность 200 л.с., даже при самом качественном обслуживании попросит капитального ремонта на 180-230 тысяч км пробега. А вот атмосферный 3.5-литровый ДВС, имеющий такую же мощность (или чуть выше), легко отходит 350 тысяч км до первого серьезного ремонта.
Одинаковый объем совсем не означает одинаковые двигатели
Мощность двигателей, в настоящее время характеризуется, как правило, их рабочим объемом, указываемым в литрах. Однако это не означает, что все двигатели объемом 3,8 литров одинаковы. Посмотрите, например, данные, приведенные в таблице.
Двигатель — Рабочий объем:
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра) производства компании Шевроле (Chevrolet) — 229 куб. дюймов
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра, также называемый двигателем 3800 сс) производства компании Бьюик (Buick) — 231 куб. дюйм
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра) производства компании Форд (Ford) — 232 куб. дюйма
Если точно пересчитать 3,8 литра (или 3800 куб. см) в кубические дюймы, то этот объем составит 231,9 куб. дюймов. В процессе округления объема двигателя, рассчитанного в кубических дюймах, а затем его перевода, также с округлением, в кубические сантиметры и литры, для совершенно разных двигателей получается один и тот же результат и, в результате, согласно маркировке они имеют одинаковый объем.
Во избежание путаницы и ошибок при заказе запчастей, при техническом обслуживании необходимо руководствоваться только . На всех автомобилях он должен быть виден через лобовое стекло. Начиная с 1980 г. идентификационный код двигателя (цифра или буква) указывается, как правило, в восьмой (если считать слева направо) позиции VIN-номера.
Двигатель 5.0-L V-8 (восьмицилиндровый V-образный двигатель объемом 5 литров) также вызывает путаницу у многих владельцев и автомехаников. Например, в некоторых моделях заднеприводных автомобилей компании General Motors может стоять двигатель 5.0-L V-8 (объемом 305 куб. дюймов) производства компании Шевроле. В тех же моделях может также стоять двигатель 5.0-L V-8 (объемом 307 куб. дюймов) производства компании Олдсмобил (Oldsmobile). Это разные двигатели и запчасти к ним не взаимозаменяемы! Компания Форд также поставляет двигатели 5.0-L V-8 (объемом 302 куб. дюйма). Эти двигатели, в зависимости от года выпуска, отличаются по таким главным характеристикам, как порядок работы цилиндров.
Маломощные, четырехцилиндровые двигатели также могут вызвать путаницу, поскольку многие производители автомобилей устанавливают двигатели, изготовленные как внутри страны, так и на зарубежных предприятиях. Чтобы безошибочно идентифицировать тип двигателя, всегда руководствуйтесь информацией, приведенной в сервисной документации.
Классификация электродвигателей
Вращающийся электродвигатель | ||||
---|---|---|---|---|
Само коммутируемый | Внешне коммутируемый | |||
С механической коммутацией (коллекторный) | С электронной коммутацией1 (вентильный2, 3) | Асинхронный электродвигатель | Синхронный электродвигатель | |
Переменного тока | Постоянного тока | Переменного тока4 | Переменного тока | |
|
|
|
|
|
Простая электроника | Выпрямители,транзисторы | Более сложнаяэлектроника | Сложная электроника (ЧП) |
Примечание:
- Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
- Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
- Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
- Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
- Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
Аббревиатура:
- КДПТ — коллекторный двигатель постоянного тока
- БДПТ — бесколлекторный двигатель постоянного тока
- ЭП — электрический преобразователь
- ДПР — датчик положения ротора
- ВРД — вентильный реактивный двигатель
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СДПМП —
- СДПМВ —
- СРД — синхронный реактивный двигатель
- ПМ — постоянные магниты
- ЧП — частотный преобразователь
Заключение
Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение
Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Также читают:
- Как определить потребляемую мощность приборов
- Как рассчитать сечения кабеля
- Маркировка резисторов по мощности и сопротивлению