Какой максимальный вращающий момент и как его можно увеличить?
Содержание:
- Увеличение крутящего момента двигателя – приемы модернизации
- Что такое плечо силы и как его нарисовать
- Зависимость мощности и крутящего момента двигателя
- Различные типы двигателей
- Работа и мощность
- От чего зависит крутящий момент
- Как увеличить момент?
- Как увеличить крутящий момент
- Напряжения при кручении
- Так что же важнее и лучше?
- Физический смысл величины M¯
- График крутящего момента
- Нагрузка насосов и типы нагрузки электродвигателя
- Крутящий момент и лошадиная сила
- Определение момента силы
Увеличение крутящего момента двигателя – приемы модернизации
Такая величина, как крутящий момент, совсем мало зависит от того, насколько быстро вращается коленвал, так как он определяется объемом мотора и давлением в цилиндре. Существует несколько способов, с помощью которых его можно увеличить:
Чип тюнинг двигателя
Первый вариант тюнинга заключается в оптимизации всего, с чем работает агрегат. Система выпуска и заводские распределительные валы заменяются аналогами, с более высокой производительностью. Далее стоит заменить воздушный фильтр, дроссельную заслонку. Этот подход относительно прост и не затратный, однако можно рассчитывать на прирост мощности не более, чем на 20-30%.
Второй путь – модификация двигателя. Здесь предстоит несколько изменить характеристики двигателя. Данный способ идеален для инжекторных авто. Его суть в программном изменении чипа, подающего сигналы основным устройствам транспортного средства
Однако действовать нужно предельно осторожно, тщательно подбирая изменения, которые будут внесены
В результате такой сложной модификации, крутящий момент авто может увеличиться на 5-20%. На расходе топлива это сильно не отобразится, а в некоторых случаях он даже может снизиться. Помимо этого, достаточно высокие результаты даст прошивка.
Распределительный вал
Когда есть возможность, можно заменить обычный распредвал на спортивный, прирост производительности сразу даст изменение программы, которая управляет подачей рабочей смеси. Спортивный распределительный вал отличается от стокового профилем кулачков, а соответственно – фазами газораспределения. Это значит, что, таким образом можно добиться эффективной подачи рабочей смеси. Чем ее больше – тем больше давление на поршень. Такие действия способствуют к увеличению крутящего момента.
Доработка головки блока цилиндра
Значительный прирост производительности даст турбирование агрегата. В не модифицированном моторе сгораемая смесь, которая впускается головкой блока цилиндра, эффективно всасывается тактом. В случае модификации, смесь подается непосредственно турбиной, что позволяет существенно увеличить объем сгораемого газа, а значит и увеличить мощность.
Рабочий объем
Действенный метод увеличить крутящий момент – увеличить рабочий объем. Для этого шатуны, поршни и коленчатый вал меняются на аналоги, только с лучшими характеристиками. Такая модификация несколько увеличит крутящий момент, но только между низкими и средними оборотами агрегата. Это значит, что для получения необходимой мощности теперь не придется раскручивать мотор до максимально высоких оборотов, что положительно скажется на рабочих характеристиках.
Камера сгорания
Прирост мощности мотора даст возможность уменьшить камеру сгорания, поскольку уменьшение объема незначительно увеличит степень сжатия. Для того чтобы уменьшить камеру сгорания, вероятнее всего, придется фрезеровать головки блока цилиндра. Помимо этого, можно попробовать подобрать поршень такого размера, чтобы он занимал больший объем в верхней части. Однако стоит учитывать, что в 16-от клапанных моторах поршень, как правило, вплотную приближен к клапанам, поэтому заменить его поршнем иной формы не получится.
Поршни
Еще один способ увеличит крутящий момент – поршни двигателя заменить на более легкие аналоги. Это поможет уменьшить нагрузку на коренные шейки и коленчатый вал. Легкие поршни не так инертны, а значит – они намного легче смогут останавливаться в «мертвых точках».
Так же можно поставить поршни большего диаметра. Для этого придется расточить блоки цилиндров, однако это так же негативно скажется на динамических свойствах мотора: может уменьшиться ресурс двигателя. Прибегать к данному способу стоит в исключительных случаях.
Что такое плечо силы и как его нарисовать
Предположим, нужно с помощью ключа закрутить гайку (см. рис. 2).
Рис. 2. Красная точка, вокруг которой вращается ключ — это центр гайки
Винт, на который накручена гайка – это ось вращения. Ключ может вращаться вокруг красной точки. Для упрощения назовем ее кратко: «точка вращения».
Примечание:
Ось вращения проходит перпендикулярно плоскости рисунка через красную точку. Используем вместо оси вращения термин «точка вращения» для простоты.
Рассмотрим следующий рисунок (см. рис. 3)
Рис. 3. Плечо силы – это перпендикуляр \( l \). Он соединяет линию действия силы с точкой вращения
На рисунке 3 черная стрелка – это вектор силы, которая вращает ключ. Пунктир – линия действия силы. Из красной точки к линии действия силы проведен перпендикуляр. Этот перпендикуляр, обозначенный \( l \), называется плечом силы.
Перпендикуляр к линии действия легко провести с помощью прямоугольного треугольника (см. рис. 4):
Рис. 4. Один катет приложим к линии действия силы, вдоль второго проведем перпендикуляр к точке вращения
Плечо силы проводят так:
- взять прямоугольный треугольник;
- приложить один из катетов к линии действия;
- провести перпендикуляр к точке вращения, используя второй катет;
Зависимость мощности и крутящего момента двигателя
Крутящий момент по мере увеличения оборотов двигателя постепенно возрастает, при оборотах около 2800 немного стабилизируется, достигая своего максимума приблизительно 178 н*метр при 4500 об/мин. Мощность двигателя по мере увеличения оборотов продолжает возрастать, что согласуется с приведенной выше формулой. Однако после достижения величины оборотов 5400 об/мин, крутящий момент снижается с большей скоростью, чем растут обороты, и мощность уменьшается.
Это соответствует физической интерпретации процессов в двигателе. На малых оборотах в двигатель поступает мало топлива и воздуха, мощность невысокая. По мере увеличения оборотов сгорает больше топлива, вырабатывается больше энергии. При дальнейшем увеличении количества оборотов двигателя мощность начинает снижаться по причинам:
- увеличение потерь на процессы трения;
- кислородное голодание;
- инерционные и другие механические потери;
- тепловые потери.
Конструкторы ДВС стремятся расширить диапазон стабильного участка характеристики зависимости крутящего момента. В качестве одного из широко распространенных конструктивных решений применяются системы интеллектуального турбонаддува. Они позволяют избежать ситуации кислородного голодания на различных оборотах.
Крутящий момент относительно стабилен при оборотах двигателя от 2500 до 5500 об/мин. Водители могут смело начинать процесс обгона даже на малых оборотах.
Высокооборотные двигатели имеют стабильный момент до 6500 – 7500 об/мин. Это позволяет развить максимальную мощность на оборотах около 7500 об/мин, как приведено на рисунке 3.
Если вы подходите к покупке автомобиля серьезно, желательно покопаться в справочниках, на форумах, ознакомиться с дилерской информацией, погуглить, и найти зависимости крутящего момента и мощности. Тогда вы с научной точки зрения будете судить о ходовых параметрах автомобиля.
Выбирая автомобиль для эксплуатации в городских условиях, целесообразно приобрести дизельный авто, если вы любитель погонять с ветерком на автобанах, подойдет высокооборотный бензиновый двигатель.
Различные типы двигателей
Как мы с вами уяснили, чем на меньших оборотах наступает максимальный крутящий момент — тем лучше, но какие моторы могут под это подходить? И вообще у каких «большой запас» этого момента? Ведь обычный бензиновый четырехцилиндровый атмосферник, выходит на свой номинал примерно в 5000 – 6000 оборотов.
НО есть моторы, которые выдают достаточно большие моменты, причем наступают они при достаточно низких оборотах. Это многоцилиндровые моторы, а также «V» – образные типы, начиная с V6 – V8. Турбированные агрегаты, имеют большой запас момента, даже при относительно малых объемах.
Однако абсолютным рекордсменом являются дизельные варианты, особенно те которые устанавливались на трактора, ведь здесь важна тяга именно на низах (скорость на трассах абсолютно не нужна). Такие варианты выходят на номинал, уже при 1500 оборотов, просто представьте! Такие агрегаты называют «тяговитыми» из-за быстрого набора крутящего момента.
Условно моторы можно разделить на четыре лагеря:
- Это обычные атмосферники, 4 цилиндра.
- Многоцилиндровые агрегаты, от 6 до 12 «горшков», сюда же можно записать и V – образные.
- Это турбированные моторы
- Дизельные агрегаты
Про «многоцилиндровые» (второй тип) сейчас особо заострять не буду, здесь понятно, что чем больше цилиндров – тем больше мощность и соответственно крутящий момент. Минус только в том что эти агрегаты тяжелые, прожорливые, и очень большие по размерам.
А вот остальные три типа стоит сравнить для полного понимания, возьмем три мотора от нового KIA SPORTAGE, смотрим таблицу.
Объем, двигателя |
Обороты в минуту
(об/мин) |
Максимальная мощность
(в л.с.) |
Крутящий момент
(в Нм) |
|
Бензиновый, 4 – цилиндровый рядный | 2,0 литра | 6200 | 150 | |
4000 | 192 | |||
Турбированный, 4 — цилиндровый рядный | 1,6 литра | 5500 | 177 | |
2000 — 4500 | 265 | |||
Дизельный, 4 — цилиндровый рядный | 2,0 литра | 4000 | 185 | |
1750 — 2750 | 400 |
Бензиновая атмосферная «четверка», развивает максимальную мощность только при 6200 оборотах в минуту, зато максимальный крутящий момент наступает уже при 4000 оборотов. Турбо вариант, 177 л.с при 5500 оборотов, но момент здесь намного выше 265 в диапазоне от 2000 до 4500 об. Но рекордсменом по л.с. и крутящему моменту идет дизель, 185 л.с. при 4000 об/мин, и крутящий момент 400! (просто вдумайтесь) в интервале 1750 – 2750 об/мин.
Как видите бензиновые агрегаты проигрывают дизелю в моменте (обычный атмосферник примерно в 2 с небольшим раза). Причем максимальной отдачи можно достичь только при 4000 об/мин. Зато бензиновый мотор легко крутится до 6200, а то и больше 7000 – 8500 об/мин, что позволит развить ему большую мощность. Дизель же не может похвастаться высокими оборотами, максимальная полка зачастую всего 4000 — 5000 об/мин, поэтому они могут проигрывать в максимальной мощности своим бензиновым собратьям.
НА старте бензиновый мотор выиграет у дизельного агрегата! Почему? ДА все просто, бензиновый агрегат можно крутить до 6500, а в редких случаях до 8000 об/мин, не переключая передачи. А вот дизель достигнет пик своего момента максимально быстро (уже при 1750 об/мин) и вам нужно будет тратить время на переключение, далее еще одна передача и т.д. Конечно эта ситуация справедлива для механики, на многих современных автоматах переключения происходят максимально быстро. ДА и для того чтобы тягаться с дизелем бензину, всегда нужно будет держать повышенные обороты, чтобы сравняться в мощности. Например, при 90 км/ч на трассе, чтобы ускориться на бензиновом агрегате, нужно скинуть передачу пониже (увеличивая обороты — увеличиваем мощность), а вот дизелю делать этого не нужно!
Работа и мощность
Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.
Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).
Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.
Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.
Приведем единицы измерения к общему виду.
Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.
Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.
Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.
Как образуется вращающий момент и частота вращения?
Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.
В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.
Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.
Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:
Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.
От чего зависит крутящий момент
На КМ будут влиять:
- Объем двигателя.
- Давление в цилиндрах.
- Площадь поршней.
- Радиус кривошипа коленвала.
Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.
Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.
Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.
Как увеличить момент?
Если нужно улучшить динамику автомобиля, можно применить несколько способов. Это увеличение объема, установка наддува, а также изменения газодинамики.
Рабочий объем мотора можно увеличить заменой коленчатого вала с большим эксцентриком либо при помощи расточки цилиндров. Замена коленвала зачастую требует определенных затрат, и нужную модель очень трудно подобрать.
Гораздо выгоднее расточить цилиндры. Стенки вполне допускают такое мероприятие. При этом можно даже обойтись серийными поршнями. Однако не факт, что такая замена обойдется дешевле, нежели замена коленчатого вала.
Дополнительный наддув можно применить лишь там, где уже стоит турбина. Этот способ требует дополнительных изменений. Изменить наддув можно поднятием планки для стравливания давления. Также вместе с этим придется дополнительно усовершенствовать камеры сгорания, менять систему охлаждения, радиаторы, воздухозаборники.
Можно обойтись и менее радикальным чип-тюнингом. Так, при помощи перепрошивки электронного блока вполне реально легко и просто изменить множество важных параметров и характеристик автомобиля.
Как увеличить крутящий момент
Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.
Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.
Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.
Напряжения при кручении
В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
где Iρ — полярный момент инерции.Эпюра касательных напряжений при кручении имеет следующий вид:
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Здесь:
— полярный момент сопротивления.Геометрические характеристики сечений:
а) для полого вала:
б) для вала сплошного сечения (c=0)
в) для тонкостенной трубы (t0,9)
где
— радиус срединной поверхности трубы.
Так что же важнее и лучше?
Здесь сложно сказать одно выходит из другого. С одной стороны момент, позволит развивать вам быстро максимальную мощность, в примере с дизелем, но он не сможет крутиться до таких оборотов как бензин, а значит его максимальная мощность в пике будет ниже. Тут знаете, кому что нужно, может быть вы водитель коммерческого транспорта, и вам не нужна максимальная скорость но важна тяга «с низов». Или наоборот, вы любите турбо моторы, которые крутятся до 8000 – 9000 оборотов и выстреливают с места.
Лично мне нравятся новые бензиновые агрегаты, такие как скажем у МАЗДЫ, мотор Skyactiv которые сейчас устанавливаются на многие модели. Здесь увеличили степень сжатия, немного приблизили мотор к дизелю, но он остался бензиновым с высокими оборотами. Здесь есть и мощность и крутящий момент, золотая середина! Думаю за такими моторами будущее (если не брать гибриды и электромобили).
И запомните: — крутящий момент толкает машину вперед, а вот мощность это то, что этот момент производит. Так что покупаем лошадиные силы, а ездим на моменте!
Сейчас видео версия статьи, смотрим.
А сейчас голосование, что вы считаете важнее – крутящий момент или мощность двигателя.
НА этом заканчиваю, читайте наш АВТОБЛОГ, подписывайтесь на канал в YOUTUBE.
Физический смысл величины M¯
В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:
Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата. Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку
Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым
График крутящего момента
Пример №1. Суперкар мощностью 500 сил с крутящим моментом двигателя 500 Н*м и магистральная фура-тягач с отдачей 500 сил и 2500 Н*м на колесах тем не менее имеют абсолютно равный крутящий момент при движении с одинаковой скоростью на оборотах максимальной мощности: М (момент на колесах, приводящий машины в движение) = N (мощность двигателя) / n (обороты колеса, при условии, что у суперкара и фуры они одинакового диаметра).
Вывод: цифра мощности отражает тягу и динамику автомобиля, а цифра крутящего момента двигателя, не учавствующая в вычислениях, может быть любой и не имеет значения.
Пример №2. Зайдем с другой стороны. Тот же суперкар и фура с вышеуказанными характеристиками (аналоги Porsche 911 GT3 RS 4.0, Scania R500 и многие другие суперкары и грузовики), как правило, имеют максимальные обороты двигателя около 9000 и 1800 соответственно. Для того чтобы компенсировать пятикратную разницу в оборотах (иметь ту же скорость движения), на фуре придется применять в пять раз более «длинную» трансмиссию, которая, соответственно, будет передавать в 5 раз меньше момента на колеса: 2500 Н*м делим на 5 и получаем те же 500 Н*м (приведенный момент), как в суперкаре.
Вывод: мы получили то же равенство тягово-динамического потенциала машин равной мощности, что и в примере №1.
В представленной таблице крутящего момента двигателей цифры Нм приведены к величине 7000 об/мин.
Нагрузка насосов и типы нагрузки электродвигателя
Выделяют следующие типы нагрузок:
Постоянная мощность
Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.
Постоянный вращающий момент
Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.
Переменный вращающий момент и мощность
«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.
Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.
Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.
Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.
Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.
В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.
Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.
Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.
На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.
Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:
Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.
В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.
Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.
Крутящий момент и лошадиная сила
Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке. Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.
В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.
Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.
Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.
В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.
Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.
Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.
Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.
Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.
Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.
Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.
Определение момента силы
Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, момент силы представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:
Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.
В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:
Где β является углом между векторами r¯ и F¯.