Устройство коллекторного электродвигателя

С обмотками возбуждения

Коллекторные двигатели постоянного тока с обмотками возбуждения нашли более широкое применение. От двигателей этого типа работает аккумуляторный электроинструмент: болгарки, дрели, шуруповерты т.д. Обмотки возбуждения делают из изолированного медного провода (в лаковой оболочке). В качестве основы используются канавки в полюсных наконечниках. На них как на основу наматываются обмотки.

Коллекторный двигатель с системой обмоточного возбуждения

Если посмотреть на устройство коллекторного двигателя, мы видим два несвязанных между собой устройства, ротор и обмотки возбуждения. От способа их подключения зависят характеристики и свойства двигателя. Различают четыре способа соединения ротора и обмоток возбуждения. Эти способы называют способами возбуждения. Вот они:

  • Независимое. Возможно только если напряжения на обмотке возбуждения и на якоре неравны (бывает очень редко). Если они равны, используется схема параллельного возбуждения.
  • Параллельное. Хорошо регулируется скорость, стабильная работа на низких оборотах, постоянные характеристики, независимы от времени. К недостаткам подключения этого типа относится нестабильность двигателя при падении тока индуктора ниже нуля.
  • Последовательное. При таком подключении нельзя включать двигатель с нагрузкой на валу ниже 25% от номинальной. При отсутствии нагрузки скорость вращения сильно возрастает, что может разрушить двигатель. Потому с ременной передачей такой тип подключения не используют, при обрыве ремня мотор разрушается. Схема последовательного возбуждения имеет высокий момент на низких оборотах, но не слишком хорошо работает на высоких, управлять скоростью сложно.
  • Смешанное. Считается одним из лучших. Хорошо управляется, имеет высокий крутящий момент на низких оборотах, редко выходит из-под контроля. Из недостатков самая высокая цена по сравнению с другими типами.

Способы подключения обмоток возбуждения

Коллекторные двигатели постоянного тока могут иметь КПД от 8-10% до 85-88%. Зависит от типа подключения. Но высокопродуктивные отличаются высокими оборотами (тысячи оборотов в минуту, реже сотни) и низким моментом, так что они идеальны для вентиляторов. Для любой другой техники используют низкооборотистые модели с малым КПД, либо к продуктивным моделям добавляют редуктор, другого решения пока не нашли.

FAQ[править]

Как обкатать коллекторный моторправить

Коллекторный мотор нуждается в «обкатке» как и модельные двигатели внутреннего сгорания, только вместо гильзы и поршня, в коллекторном моторе притирки требуют графитовые щётки.

Щетки нового мотора имеют малую площадь соприкосновения с коллектором, из-за этого ток, проходящий через щетки, сильно разогревает их, что может вызвать повреждение, откол или «прикипание» щеток к коллектору. Для того что бы это избежать, необходимо «обкатать» коллекторник следующим образом (применительно к автомодели):

«Вывесите» или переверните модель так, чтобы колеса не касались поверхности;

Включите модель и запустите двигатель на малых оборотах. Для этого: любым удобным способом зафиксируйте «курок» пульта управления на 15-20% хода влево или вправо относительно «нейтрали»;

Дайте поработать коллекторнику в течении 30-40 секунд;

После остановки, продуйте двигатель, чтобы убрать остатки отработанного материала щеток;

Запустите двигатель еще на 2-3 минуты, согласно пункту 2;

Повторно продуйте двигатель.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора. Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован. Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов. Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера. Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому  он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора. К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт. На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Как работает впускной коллектор

Часто впускной коллектор содержит дроссельную заслонку (клапан) и некоторые другие детали. Впускной коллектор состоит из ресивера (приточной камеры) и впускных труб (раннеров). В некоторых двигателях V6 и V8 впускной коллектор может быть выполнен из нескольких отдельных секций или частей.

Впускной воздух проходит через воздушный фильтр, впускной патрубок, затем через корпус дроссельной заслонки в камеру нагнетания — ресивер, затем через впускные трубы (раннеры) — в цилиндры.

Дроссельный клапан (заслонка) контролирует обороты двигателя, регулируя количество воздушного потока. В современных автомобилях обороты холостого хода также регулируются корпусом дроссельной заслонки — на холостом ходу заслонка открывается под очень небольшим углом.

Поскольку корпус дроссельной заслонки практически закрыт, когда двигатель работает на холостом ходу, во впускном коллекторе появляется вакуум. Если где-то в коллекторе будет утечка вакуума, двигатель будет работать неровно на холостом ходу. Многие проблемы впускного коллектора связаны с утечками вакуума.

Универсальные коллекторные двигатели

Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).

Универсальный коллекторный двигатель работает от постоянного и переменного напряжения

По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:

  • Схема возбуждения всегда последовательная.
  • Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
  • Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.

Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.

Достоинства и недостатки

Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:

  • Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
  • Сильное искрение коллекторного узла на переменном токе.
  • Создают радиопомехи.
  • Повышенный уровень шума при работе.

Во многих моделях строительной техники

Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.

В генераторах также одновременно выполняет две функции: является датчиком углового положения ротора со скользящими контактами и переключателем направления тока со скользящими контактами на токосъёмах (щётках) в зависимости от углового положения ротора, т. е. является механическим выпрямителем.

Часть щёточно-коллекторного узла щётка получила своё название от ранних конструкций, в которых действительно была похожа на щётку из множества гибких проволочек. В настоящее время изготавливается в виде бруска из графита или другого токопроводящего материала с малым удельным сопротивлением и малым коэффициентом трения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Рекомендуем:

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Преимущества[править]

(перед коллекторными моторами)

  • Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом проще, в ней нет щеточного узла (который работает постоянно в режиме трения, создает искры и в итоге потерю энергии)
  • Бесколлекторные моторы практически не изнашиваются, поэтому отсутствует необходимость в техническом обслуживании (кроме случаев выхода из строя подшипников).
  • Большинство бесколлекторных моторов не боятся влаги (могут работать полностью погружёнными под воду) при условии изоляции фазовых проводов, катушки электромагнита намотаны изолированным проводом по умолчанию. Но следует иметь в виду, что при длительной работе в воде неизбежно вымывается смазка из подшипников и они могут закиснуть, заржаветь.
  • Возможность использования в воспламеняемой, взрывоопасной и агрессивной среде (из-за отсутствия искр).
  • Большая перегрузочная способность по моменту.
  • Высокие энергетические показатели (КПД более 90 %)
  • Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
  • Хорошее соотношение массогабаритных характеристик и мощности

Коллекторные двигатели постоянного тока

Если брать моторы с небольшой мощностью, то в них обязательно явным образом присутствует один из магнитов (он крепится прямо на корпус машины).

Второй появляется после подачи напряжения на обмотку якоря. С этой целью применяется устройство особого типа, именуемое коллекторно-щеточным узлом. Коллектор является кольцом, проводящим ток, которое крепится на вал мотора. К нему подключаются выводы обмоток якоря.

Для возникновения вращающего момента нужна непрерывная смена полюсов якорного магнита. Это должно выполняться в тот момент, когда якорь проходит через «магнитную нейтраль». Конструктивным образом это выполняется благодаря разделению коллекторного кольца на части (секторы) при помощи непроводящих ток пластин.

Выводы якорных обмоток цепляют к секторам поочередно. Для соединения коллектора и сети питания применяются щетки – стержни из графита с высокой электропроводимостью и маленьким коэффициентом трения по скольжению.

Моторы большой мощности не снабжаются физическими магнитами в силу того, что это сильно утяжелит их конструкцию.

В этих машинах, для создания постоянного магнитного поля, применяют металлические стержни с обмотками, подключаемые к положительной, либо отрицательной шине питания. Полюса одноименного типа подключают один за другим (последовательным образом).

Двигатель может иметь одну, либо четыре пары полюсов. Количество же щеток-токосъемников должно соответствовать числу пар полюсов. У моторов с большой мощностью предусматриваются некоторые конструктивные хитрости. Одна из них заключается в сдвигании щеточного узла на некоторый угол по отношению против вращения после старта мотора и смены нагрузки на нем.

Делается это с целью компенсации эффекта «якорной реакции», который приводит к торможению вала, в результате чего происходит уменьшение эффективности мотора.

Виды впускных коллекторов

Существуют такие виды впускных коллекторов:

  • стальные;
  • алюминиевые;
  • пластиковые;
  • с изменяемой геометрией;
  • с клапанами контроля выхлопных газов (EGR);
  • с турбонаддувом;
  • с точечным впрыском топлива и др.

На современных двигателях довольно широко распространены коллекторы с точечным впрыском топлива. В такой модификации топливо подается при помощи электромагнитных форсунок, установленных в каждой из его труб-каналов.

Принципиальная схема впускного коллектора с точечным впрыском топлива

Впускной коллектор, как и двигатель в целом, продуктивно работает в определенном диапазоне оборотов. Устройство и тип установленного коллектора зависит от компоновки блока цилиндров, от целевой направленности двигателя и от конструктивных решений в целом.

Все выше перечисленные коллекторы, делятся на две группы:

  • одноплоскостные;
  • двухплоскостные.

Одноплоскостной коллектор подает топливовоздушную смесь через один общий канал, многоплоскостной же изначально делит поток смеси на два потока.

Одноплоскостной коллектор

Как правило, двигатели с двухплоскостным коллектором выдают больше мощности на низких и средних оборотах в пределах 2000-4000 об/мин. На высоких же — из-за образующихся завихрений мощность будет несколько ниже.

Двухплоскостной коллектор

Коллектор с общей камерой без перегородок раскрывает свой потенциал на оборотах от 5000 и выше.

Очистка впускного коллектора, клапанов и камеры сгорания для моторов GDI с пробегам за 100тыс — процедура вынужденная и обязательная.

Полностью избавиться от чистки впускного тракта не получится. Её можно только отсрочить, поддерживая мотор в исправном состоянии (грамотно менять моторное масло, вовремя менять маслосъемные колпачки, не допускать закоксовывания поршневых колец, применять чистый бензин, и качественные топливные фильтры). Контроль загрязнений правильней осуществлять при помощи технических эндоскопов. Визуальный осмотр камеры сгорания при плановой диагностике — даст конкретную оценку необходимости очистки двигателя.

Плюсы и минусы эксплуатации

Для сравнения квалифицированные специалисты использовали следующие параметры: оба агрегата подключили к домашней электросети с частотой 50 Гц и напряжением 220 В. Мощность мотора устройств полностью идентична. Итоговая разность в механических параметрах может выступать как огромный плюс, так и как минус (всё зависит только от того, какие требования предъявляет пользователь к приводу).

Коллекторный двигатель обладает следующими преимуществами над агрегатом постоянного тока:

Меньший показатель пускового тока, что особенно важно для той техники, которая используется потребителями в быту.
Агрегат можно включать напрямую в сеть, полностью отсутствует необходимость в установке вспомогательных приспособлений. А вот агрегат с постоянным током нуждается в непрерывном выпрямлении.
Быстроходность и полное отсутствие зависимости от сетевой частоты.
Если есть управляющая схема, то устройство коллектора получается более простым — тиристор и реостат

Когда электронная деталь выходит из строя, то сам агрегат остаётся в рабочем состоянии (но будет эксплуатироваться на полную мощность).

Коллекторный электродвигатель обладает следующими минусами:

  1. Общий процент КПД существенно снижен, так как присутствует индуктивность и потери на перемагничивание статора.
  2. Существенно уменьшен максимальный крутящийся момент.
  3. Относительно небольшая надёжность и непродолжительный эксплуатационный срок.

Любые изменения в настройках возможны только в том случае, если в агрегате предусмотрено наличие регулятора оборотов. Разное количество подаваемой электроэнергии может менять этот показатель всего на 10%. В то время как качественный регулятор оборотов позволяет уменьшить их количество в несколько раз. Сделать такое приспособление можно самостоятельно или купить в специализированном магазине. Но нужно проверить, сможет ли оно работать в коллекторе с определённой мощностью и количеством оборотов. Если же регулятор будет слабым, то он просто сломается.

Замена коллектора электродвигателя своими руками

Прибор ПУНС-5 с контролируемым якорем

Прибор предназначен для:

  • обнаружения обрывов и определения сопротивления обмоток якоря;
  • обнаружения межвиткового замыкания в обмотках якоря;
  • определения целостности обмоток статора;
  • обнаружения межвиткового замыкания в обмотках статора;
  • определения сопротивления изоляции обмоток якоря (статора) при напряжении 500 В (функция мегаомметра);
  • определения шага и угла укладки обмоток якоря.

Технические характеристики прибора ПУНС-5

Типоразмеры проверяемых якорей:

  • максимальный диаметр — 60 мм;
  • длина (вместе с валом) — 100. 250 мм;
  • мощность — 100. 2500 Вт.

Из-за истирания графита образуется мелкая крошка, которая вместе с пылью и влагой загрязняет зазор между графитовым контактором и держателем. В данном пространстве образуются наслоения, которые высыхают и затвердевают от нагрева щеток, тем самым фиксируя их.

Устройство коллекторный щеток

Данное заклинивание щеток из-за затвердевшей грязи в держателе часто является причиной невозможности запуска ранее исправно работавшего коллекторного электродвигателя. Пока работающий двигатель издает вибрацию, прижимная пружина может преодолевать сопротивления наслоений, и контакт с ламелями коллектора сохраняется. Но после выключения скопившаяся грязь застывает, щетка фиксируется и уменьшается из-за охлаждения, образуя зазор, разрывающий контакт с ламелями.

Ламели коллектора якоря электродвигателя

Проверить прижимную силу щетки можно поддев графит ножом или мелкой отверткой – контактор должен свободно двигаться в держателе, упруго отскакивая, ударяясь в ламели. В противном случае щетку и держатель можно почистить, промыть в растворителе, или немного спилить грани графитового контактора для большего зазора. Если выработка щетки почти дошла до порога ресурса, то ее лучше заменить на новую.

Важно

Для якорей мощных электродвигателей, у которых сопротивление обмоток составляет десятые доли Ом, эта погрешность может быть существенной. Для устранения погрешности переходного сопротивления используется 4-проводная схема измерения, показанная на рис. 46. При такой схеме измерения величина переходного сопротивления Rn практически не влияет на выходное напряжение U, которое в этом случае пропорционально измеряемому сопротивлению Rэ: U = lo*R3 (при условии R1=R2Rэ)

Сравнивая показания цифрового вольтметра различных секций обмоток якоря, можно судить о переходном сопротивлении между выводами секции и пластинами коллектора, то есть о качестве обжима или термоусадки (сварки) проводов в ламелях коллектора.

Обнаружение межвиткового замыкания в обмотках якоря

Для обнаружения межвиткового замыкания в обмотках якоря последний помещают в переменное электромагнитное поле, создаваемое с помощью внешней статорной катушки.

Настаторную катушку поступает переменное напряжение с генератора (рис. 5). С противоположной стороны от статорной катушки вблизи пазов якоря размещают датчик электромагнитного поля BS. При отсутствии межвиткового замыкания в обмотках наводится напряжение, но из-за симметричного расположения обмоток ток в обмотках отсутствует.

Вследствие этого суммарное электромагнитное поле, воздействующее на датчик BS, очень незначительно.

Нарезать определённое количество гильз и вставить в пазы очищенного якоря.

  • Перемотка катушек. Конец нового проводника приприпаивается к окончанию ламели и наматывается последовательными круговыми движениями, против часовой стрелки. Такая укладка называется «укладкой вправо». Намотка Повторить для всех катушек. Возле коллектора стянуть провода толстой нитью из х/б ткани (капрон применять запрещено, так как он плавится при нагреве).
  • Проверка качества намотки. По окончании укладки всех обмоток, проверить мультиметром отсутствие межвитковых замыканий и возможных обрывов.
  • Финишная обработка. Готовую катушку обработать лаком или эпоксидной смолой для скрепления обмотки. В заводских условиях пропитку сушат в специальных печах. Дома это можно сделать в духовке. Как вариант — применять для пропитки быстросохнущие лаки, нанося покрытие в несколько слоёв.

Устройство

Хотя со стороны впускной коллектор кажется лишь трубопроводом специфической формы, на деле над его геометрией работает целая команда инженеров, рассчитывая сечение, длину и объем.

Плюс к этому в его состав входят:

  • Дроссельная заслонка;
  • Приточная камера;
  • Воздушный фильтр;
  • Впускной клапан;
  • Камера нагнетания.

Для двигателей с распределенным впрыском топлива, во впускной коллектор дополнительно устанавливают инжекторы, из-за чего смешение топливных и воздушных масс происходит прямо в камере нагнетания.

Сам трубопровод может объединять от 2 до 12 каналов, в зависимости от количества цилиндров в блоке двигателя. При этом для 4-цилиндрового мотора иногда используется коллектор с тремя трубами.

Также стоит отметить, что большинство современных впускных коллекторов последние 5 лет изготавливают из специального высокотемпературного пластика, тогда как выпускной коллектор все еще может быть выполнен только из металла.

Конструкция[править]

Микроэлектродвигатели имеют магнитопровод якоря, выполненный в виде трехзубцового пакета из штампованных листов электротехнической стали.

На рисунке обозначено: 1 — щит; 2 — якорь; 3 — корпус; 4 — коллектор; 5 — постоянные магниты; 6 — скоба; 7 — прокладка.

Петлевая обмотка якоря, имеющая три укороченные секции, намотана непосредственно на зубцы пакета и соединяется в звезду или треугольник. Начало в крышке машины, и трехламельный цилиндрический коллектор, напрессованный каждой секции присоединено к коллекторной пластине. Питание двигателя осуществляется через щеточный узел, смонтированный на валу якоря.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector