Проверка конденсатора мультиметром и измерение ёмкости
Содержание:
- Как проверить мультиметр на работоспособность
- Как работает полимерный конденсатор
- Подготовка перед проверкой
- Преимущества твердотельных конденсаторов
- Основные неисправности и причины их возникновения
- Проверка на схеме
- Как проверить магнетрон свч печки на исправность
- Порядок проверки
- Какие неисправности могут случиться в конденсаторе
- Проверка исправности электролитического конденсатора
- Возможные неисправности
- Определение параметров
- Как проверить электролитический конденсатор мультиметром
- Как проверить конденсатор мультиметром
Как проверить мультиметр на работоспособность
Надо перевести переключатель в положение для измерения сопротивления. Обычно это положение обозначается ОНМ. Прибор следует отградуировать механической градуировкой так, чтобы стрелка совместилась с крайней риской.
Замкнуть хвостики отверткой, ножом, одним из щупальцев мультиметра для снятия заряда с конденсатора
На этом этапе надо действовать аккуратно и осторожно. Даже небольшой бытовой элемент может нанести удар по человеческому телу
После включения прибора, необходимо перевести переключатель в режим измерения сопротивления и соединить щупы. На дисплее должно отразиться нулевое значение сопротивления или близко к нему.
Ход проверки
Определяют визуально на предмет физических нарушений. После чего пробуют крепление ножек на плате. Несильно раскачивают элемент в разные стороны. При обрыве одной из ножек или отслаивании электродорожки на плате, это сразу будет заметно.
Если внешних признаков нарушений нет, то сбрасывают возможный заряд и прозванивают мультиметром.
Если на приборе показано практически нулевое сопротивление, то элемент начал заряжаться и исправен. По мере зарядки, сопротивление начинает расти. Рост значения должен быть плавно, без рывков.
При нарушенной работоспособности:
- При зажиме разъёмов показания тестера сразу безразмерно велики. Значит, обрыв в элементе.
- Мультиметр на нуле. Иногда сигнализирует звуковым сигналом. Это признак короткого замыкания или, как говорят, «пробой».
В этих случаях элемент надо заменить на новый.
Если надо проверить работоспособность неполярного конденсатора, то выбирают предел измерения мегаомы. При тестировании исправная радиодеталь не покажет сопротивление выше 2 мОм. Правда, если номинальный заряд элемента меньше 0,25 мкФ, то требуется LC-метр. Мультиметр здесь не поможет.
После проверки на сопротивление следует проверка на ёмкость. Для того чтобы знать, способен ли радиоэлемент накапливать и удерживать заряд.
Тумблер мультиметра переводится в режим СХ. Выбирается предел измерения исходя из емкости элемента. К примеру, если на корпусе обозначена ёмкость в 10 микрофарад, то пределом на мультиметре может быть 20 микрофарад. Значение ёмкости указано на корпусе. Если показатели измерения сильно отличаются от заявленных, то конденсатор неисправен.
Этот вид измерения лучше всего проводить цифровым прибором. Стрелочный покажет лишь быстрое отклонение стрелки, что лишь косвенно говорит о нормальности проверяемого элемента.
Как проверить устройство не выпаивая
Для того чтобы случайно не сжечь паяльником какую-нибудь микросхему на плате, существует способ проверки конденсатора мультиметром не выпаивая.
Перед тем как прозвонить, электродетали разряжаются. После чего тестер переводится в режим проверки сопротивления. Щупальца прибора подключаются к ножкам проверяемого элемента, с соблюдением необходимой полярности. Стрелка прибора должна отклонится, поскольку по мере зарядки элемента его сопротивление увеличивается. Это свидетельствует о том, что конденсатор исправен.
Иногда приходится проверять на плате и микросхемы. Это сложная процедура, не всегда выполнимая. Поскольку микросхема представляет собой отдельный узел, внутри которого находится большое количество микродеталей.
Проверка микросхемы
Мультиметр ставится в режим измерения напряжения. На вход микросхемы подается напряжение в пределах допустимой нормы. После чего необходимо проконтролировать поведение на выходе микросхемы. Это очень сложный прозвонок.
Перед выполнением всех видов работ, связанных с электричеством, проверки, тестирования радиоэлементов, очень важно соблюдать правила безопасности. Мультиметр должен тестировать только обесточенную электрическую плату
Как работает полимерный конденсатор
Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:
Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.
Элемент имеет определенные основные характеристики:
- Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
- Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
Второстепенные характеристики:
- Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
- Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
- Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.
Подготовка перед проверкой
В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.
Мультиметр с аналоговой шкалой и цифровой мультиметр
Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.
Для подготовки к проверке:
Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными
Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.
Преимущества твердотельных конденсаторов
- В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
- Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
- Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
- Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.
Основные неисправности и причины их возникновения
Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:
- Снижение номинальной емкости, которая будет происходить в процессе высыхания.
- Ток утечки будет превышать необходимо значение.
- Возрастание активных потерь цепи.
- Возникло короткое замыкание обкладок.
- Потеря контакта, которая произошла между обкладкой и выводом детали.
Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.
На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.
Проверка на схеме
При выпаивании конденсатора он может на некоторое время восстановить свои свойства из-за нагрева. Тестирование его параметров вне схемы даст неверные результаты. Таким свойством, чаще всего, обладает электролитический тип. Как проверить конденсатор мультиметром не выпаивая его — прежде всего, нужно хорошо ознакомиться со схемой.
Конкретный конденсатор находится в определенном месте конкретной схемы. Если начать его проверять без предварительных действий, то другие элементы будут шунтировать тестируемую деталь или существенно влиять на результаты измерений. Если есть возможность — отпаять контакты на других элементах схемы, которые соединены с тестируемой деталью последовательно. После этого может проводиться проверка конденсатора мультиметром.
Как проверить магнетрон свч печки на исправность
Микроволновая печь применяется в быту для быстрого приготовления пищи уже довольно давно. Серийно их начали изготавливать в году и очень быстро эти приборы стали незаменимы практически на любой кухне. При этом сама микроволновая печь не вырабатывает тепло, а только излучает радиоволны сверхвысокой частоты СВЧ. Взаимодействуя с продуктами питания, эти волны заставляют молекулы жидкости, находящиеся в пище, вращаться с большой частотой. Возникающее при этом на молекулярном уровне трение и нагревает еду. Источником СВЧ-волн служит магнетрон, являющийся неотъемлемой частью микроволновки. Магнетроном от греч.
Порядок проверки
Некоторые дефекты можно обнаружить и без прибора. Поэтому прежде чем им воспользоваться, необходимо выполнить первые 2 пункта.
Внешний осмотр
Даже небольшое вздутие корпуса – явный признак неисправности. Другие дефекты, которые легко обнаружить визуально:
- появление подтеканий (характерно для «электролитов»);
- изменение окраски корпуса;
- наличие признаков термических воздействий на данном участке (отслоение дорожек, потемнение платы и тому подобное).
Проверка надежности фиксации
Нужно попробовать покачать емкость, если она впаяна в электронную плату. Естественно, аккуратно. При обрыве одной из ножек это сразу почувствуется.
Проверка на сопротивление
Если предстоит работать с «электролитом», то здесь важна его полярность. Плюсовой вывод обозначается на корпусе меткой «+». Поэтому и клеммы прибора присоединяются соответственно. Плюсовая – на «+», минусовая – на «–». Но это для «электролитов». При проверке конденсаторов бумажных, керамических и так далее – без разницы. Предел измерения – максимальный.
Что смотреть? Как движется стрелка. В зависимости от номинала конденсатора она или сразу устремится к «∞», или медленно пойдет к краю шкалы. Но главное – при ее перемещении не должно быть скачков (рывков).
- Если в детали пробой (КЗ), то стрелка останется на нуле.
- При внутреннем обрыве она резко уйдет на «бесконечность».
На емкость
В этом случае понадобится прибор цифровой. Стоит отметить, что не все мультиметры способны провести такое испытание, а если и могут, то результат будет довольно приблизительным. По крайней мере, на изделия «made in China» особо полагаться не стоит.
Как подключать деталь к прибору, написано в его инструкции (раздел «измерение емкости»). Если речь идет об «электролите», то опять-таки – с соблюдением полярности.
Примерно определить соответствие обозначенному на корпусе детали номиналу емкости можно и стрелочным прибором. Если она небольшая, то при проверке на сопротивление стрелка отклоняется достаточно быстро, но не резко. При значительной величине емкости заряд идет медленнее, и это хорошо видно. Но опять-таки, это всего лишь косвенное свидетельство пригодности конденсатора, говорящее о том, что КЗ нет и он берет заряд. Повышенный ток утечки таким способом определить невозможно.
Полезные советы
Если схема дает сбои, то нужно обратить внимание на дату выпуска конденсаторов, стоящих в конкретной цепи. За 5 лет эта радиодеталь «усыхает» примерно на 55 – 75%. На проверку старой емкости тратить время не имеет смысла – лучше сразу менять
Даже если конденсатор в принципе и рабочий, то определенные искажения он уже вносит. Это в первую очередь относится к импульсным схемам, с которыми можно столкнуться, к примеру, при ремонте «сварочника» инверторного типа. А в идеале такие элементы цепи желательно менять раз в пару лет.
Чтобы результаты измерений были максимально точными, перед проверкой емкости в прибор следует поставить «свежую» батарейку.
Конденсатор перед испытанием должен из схемы выпаиваться (или хотя бы одна его ножка). Для больших деталей с подводкой проводов – 1 из них отсоединяется. В противном случае истинного результата не будет. Например, цепь станет «звониться» через другой участок.
В ходе проверки конденсатора нельзя касаться руками его выводов. Например, прижимать щуп к ножкам пальцами. Сопротивление нашего тела – порядка 4 Ом, поэтому так проверять радиодеталь совершенно бессмысленно.
На проверку старой емкости тратить время не имеет смысла – лучше сразу менять. Даже если конденсатор в принципе и рабочий, то определенные искажения он уже вносит. Это в первую очередь относится к импульсным схемам, с которыми можно столкнуться, к примеру, при ремонте «сварочника» инверторного типа. А в идеале такие элементы цепи желательно менять раз в пару лет.
Чтобы результаты измерений были максимально точными, перед проверкой емкости в прибор следует поставить «свежую» батарейку.
Конденсатор перед испытанием должен из схемы выпаиваться (или хотя бы одна его ножка). Для больших деталей с подводкой проводов – 1 из них отсоединяется. В противном случае истинного результата не будет. Например, цепь станет «звониться» через другой участок.
В ходе проверки конденсатора нельзя касаться руками его выводов. Например, прижимать щуп к ножкам пальцами. Сопротивление нашего тела – порядка 4 Ом, поэтому так проверять радиодеталь совершенно бессмысленно.
Какие неисправности могут случиться в конденсаторе
Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.
Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:
- Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
- Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
- Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
- Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
- Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.
ЭПС складывается из нескольких факторов:
— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.
— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.
— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.
Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно
Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)
Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.
Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.
Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):
10 V | 16 V | 25 V | 35 V | 50 V | 63 V | 100 V | 160 V | 250 V | 350 V | 450 V | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 μF | — | — | 2.1 | 2.4 | 4.5 | 4.5 | 8.5 | 9.5 | 8.7 | 8.5 | 3.6 |
2.2 μF | — | — | 2.0 | 2.4 | 4.5 | 4.5 | 2.3 | 4.0 | 6.1 | 4.2 | 3.6 |
3.3 μF | — | — | 2.0 | 2.3 | 4.7 | 4.5 | 2.2 | 3.1 | 4.6 | 1.6 | 3.5 |
4.7 μF | — | — | 2.0 | 2.2 | 3.0 | 3.8 | 2.0 | 3.0 | 3.5 | 1.6 | 5.7 |
10 μF | — | 8.0 | 5.3 | 2.2 | 1.6 | 1.9 | 2.0 | 1.2 | 1.4 | 1.2 | 6.5 |
22 μF | 5.4 | 3.6 | 1.5 | 1.5 | 0.8 | 0.9 | 1.5 | 1.1 | 0.7 | 1.1 | 1.5 |
33 μF | 4.3 | 2.0 | 1.2 | 1.2 | 0.6 | 0.8 | 1.2 | 1.0 | 0.5 | 1.1 | — |
47 μF | 2.2 | 1.0 | 0.9 | 0.7 | 0.5 | 0.6 | 0.7 | 0.5 | 0.4 | 1.1 | — |
100 μF | 1.2 | 0.7 | 0.3 | 0.3 | 0.3 | 0.4 | 0.15 | 0.3 | 0.2 | — | — |
220 μF | 0.6 | 0.3 | 0.25 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | — | — |
330 μF | 0.24 | 0.2 | 0.25 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | — | — |
470 μF | 0.24 | 0.18 | 0.12 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.15 | — | — |
1000 μF | 0.12 | 0.15 | 0.08 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
2200 μF | 0.12 | 0.14 | 0.14 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
3300 μF | 0.13 | 0.12 | 0.13 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
4700 μF | 0.12 | 0.12 | 0.12 | .01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
Проверка исправности электролитического конденсатора
Проверка начинается с визуального осмотра детали. Взрыв – естественное явление при увеличенном давлении внутри корпуса электролитов, если они повреждены. Даже при небольшой взрывной мощности вред будет заключаться в разбрызгивании их содержимого вокруг.
Чтобы предотвратить это, в верхней части конденсаторов делается крестообразная насечка, которая способствует стравливанию внутри корпусного давления. Вспучивание и разрыв корпуса уже говорит о неисправности устройства.
В остальных случаях потребуется проверить работоспособность конденсатора мультиметром, который измерит сопротивление батарейки. Для этого производится подключение прибора к выводам конденсатора с соблюдением полярности.
Первоначально сопротивление будет близко к 0 из-за разрежённости устройства. Но при зарядке конденсатора от батареи можно будет наблюдать увеличение показателя сопротивления. При окончании зарядки мультиметр высветит бесконечно большое сопротивление.
До проверки конденсатора потребуется его разрядка, которая может быть осуществлена при замыкании выводов между собой. Предельное значение измерения – максимально возможное. Производится соединение плюсового выхода детали с ее красным аналогом на приборе.
Подключение минусового черного выхода – к другому выходу. Измеряя сопротивление, следят за постоянно увеличивающимися показаниями мультиметра. Не должно быть их уменьшений.
Контакты между выходами должны быть надежными. Процесс не должен быть прерван. Запрещено прикасание к ним из-за сопротивления человеческого тела, которое помешает зарядке и определению работоспособности детали.
Результаты проверочной работы:
- Показания равны 0 и отсутствует их увеличение или оно незначительно. Значит, имеется замыкание между обкладками. И если конденсатор подключить к рабочей схеме, произойдет короткое замыкание.
- Заметное увеличение показаний прибора, но без достижения ими бесконечности. Значит, есть ток утечки, при значительном снижении емкости изделия. Результат – неэффективная работа элемента без полного выполнения им своего функционального назначения. Сигнал будет искажен.
Напряжение мультиметра – до 1,5 В, а в рабочих схемах с конденсатором – значительно больше. Поэтому при наличии утечки у прибора и его установки при рабочем напряжении возможен полный его пробой.
Возможные неисправности
Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.
- Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
- Радиатор может прийти в негодность, если деталь перегорает;
- Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
- Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный — численное сопротивление;
- Изменение герметичности детали из-за перегрева;
- Нарушение работы высоковольтного диода;
- Неисправность конденсатора высокого напряжения;
- Разлом контактов предохранителя, основная задача которого не допускать перегрева.
Определение параметров
Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.
Проверка емкости
Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.
Инструкция:
- Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
- Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
- Оба щупа присоединяются к выводам.
Полученное значение является номиналом емкости.
Определение полярности
Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:
- Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
- Современные радиодетали также имеют обозначение на корпусе знаком «+».
- SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.
Минус определяется также визуально:
Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.
Как проверить электролитический конденсатор мультиметром
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
Электролитические неполярные конденсаторы
В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
Неисправность конденсаторов
В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Проверка конденсаторов цифровым мультометром
Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Как проверить конденсатор мультиметром
Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.
Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.
Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ. Пошаговая инструкция проверки:
- Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
- Переключатель мультиметра ставится на значение сопротивления.
- Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.
Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.
Если значение 1 появилось спустя некоторое время, элемент считается исправным.
Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.
Электролитический
Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.
В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.
Из чего складывается ESR:
- сопротивление обкладок, выводов, узлов соединения;
- неоднородность диэлектриков, влага, паразитные примеси;
- сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.
В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.
Керамический
Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».
Пленочный
Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:
- снижение рабочих показателей в результате иссыхания;
- увеличение параметров тока утечки;
- повышение активных потерь внутри цепи;
- замыкание на обкладках;
- потеря контакта;
- обрыв проводника.
Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.
Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.